The potential role of listening modes in auditory interfaces for location-based services

John McGee, Charlie Cullen

Research output: Contribution to conferencePaper

Abstract

The auditory modality offers several advantages as a means of communication for the purposes of location-based services (LBS), including fast response time [1], low processing and storage overheads [2], and hands/eyes-free mobility. However, with more and more sound-producing technology being used in day-to-day life, the battle for our acoustic attention has led to a steady rise in acoustic noise levels [3]. In an already noisy environment, it is tempting for the sound designer to simply use more volume as a means of gaining the listener’s attention but this creates a vicious circle of noise whereby every sound designer is merely struggling to be heard over the noise of every other sound designer. The field of soundscape theory however, may offer some potential solutions in this regard. Soundscape theory, as described by Schafer [4, 5] and Truax [6], considers sound from a more holistic point of view and the concept of listening modes considers the different levels of attention we pay to auditory stimuli depending on context and location within the soundscape. While several different theoretical listening modes have been proposed across the various acoustic disciplines, there is still a need for empirical data to support the existence of these modes. One area in which there is a certain amount of empirical data is in relation to spectral bandwidth and what Krause has called his ‘niche theory’ [7-9]. Niche theory describes the way in which different species appear to occupy discrete frequency bandwidths within the soundscapes of natural habitats; it is argued that this natural balance keeps redundant noise to a minimum and enables more efficient acoustic communication. If the principles observed in niche theory were to be observed in human listening behavior then a new approach to sound design might be possible whereby auditory stimuli exploit specific frequency bandwidths in order to maximize information exchange without necessarily raising noise levels. In this paper we outline a proposed experiment whereby listeners are asked to engage in a foreground task that encourages competitive conversation while also attending to a background listening task whereby participants have to acknowledge background non-speech sound bursts of varying spectral bandwidth presented at random intervals. Our aim is to compare the spectrograms of foreground conversations and background stimuli to see if relative spectral bandwidth has any discernible effect on stimulus identification success rate and response time.
Original languageEnglish
Publication statusPublished - 20 May 2011
Externally publishedYes
EventKeep an ear on 5th International FKL symposium on soundscape
- Florence, Italy
Duration: 19 May 201122 May 2011

Conference

ConferenceKeep an ear on 5th International FKL symposium on soundscape
CountryItaly
CityFlorence
Period19/05/1122/05/11

Fingerprint

acoustics
bandwidth
auditory stimuli
conversation
stimuli
communication
human behavior
habitats
spectrograms
bursts
intervals

Cite this

McGee, J., & Cullen, C. (2011). The potential role of listening modes in auditory interfaces for location-based services. Paper presented at Keep an ear on 5th International FKL symposium on soundscape
, Florence, Italy.
McGee, John ; Cullen, Charlie. / The potential role of listening modes in auditory interfaces for location-based services. Paper presented at Keep an ear on 5th International FKL symposium on soundscape
, Florence, Italy.
@conference{13ebab7da4f941d29e57eeefc69e5ca4,
title = "The potential role of listening modes in auditory interfaces for location-based services",
abstract = "The auditory modality offers several advantages as a means of communication for the purposes of location-based services (LBS), including fast response time [1], low processing and storage overheads [2], and hands/eyes-free mobility. However, with more and more sound-producing technology being used in day-to-day life, the battle for our acoustic attention has led to a steady rise in acoustic noise levels [3]. In an already noisy environment, it is tempting for the sound designer to simply use more volume as a means of gaining the listener’s attention but this creates a vicious circle of noise whereby every sound designer is merely struggling to be heard over the noise of every other sound designer. The field of soundscape theory however, may offer some potential solutions in this regard. Soundscape theory, as described by Schafer [4, 5] and Truax [6], considers sound from a more holistic point of view and the concept of listening modes considers the different levels of attention we pay to auditory stimuli depending on context and location within the soundscape. While several different theoretical listening modes have been proposed across the various acoustic disciplines, there is still a need for empirical data to support the existence of these modes. One area in which there is a certain amount of empirical data is in relation to spectral bandwidth and what Krause has called his ‘niche theory’ [7-9]. Niche theory describes the way in which different species appear to occupy discrete frequency bandwidths within the soundscapes of natural habitats; it is argued that this natural balance keeps redundant noise to a minimum and enables more efficient acoustic communication. If the principles observed in niche theory were to be observed in human listening behavior then a new approach to sound design might be possible whereby auditory stimuli exploit specific frequency bandwidths in order to maximize information exchange without necessarily raising noise levels. In this paper we outline a proposed experiment whereby listeners are asked to engage in a foreground task that encourages competitive conversation while also attending to a background listening task whereby participants have to acknowledge background non-speech sound bursts of varying spectral bandwidth presented at random intervals. Our aim is to compare the spectrograms of foreground conversations and background stimuli to see if relative spectral bandwidth has any discernible effect on stimulus identification success rate and response time.",
author = "John McGee and Charlie Cullen",
year = "2011",
month = "5",
day = "20",
language = "English",
note = "Keep an ear on 5th International FKL symposium on soundscape<br/> ; Conference date: 19-05-2011 Through 22-05-2011",

}

McGee, J & Cullen, C 2011, 'The potential role of listening modes in auditory interfaces for location-based services' Paper presented at Keep an ear on 5th International FKL symposium on soundscape
, Florence, Italy, 19/05/11 - 22/05/11, .

The potential role of listening modes in auditory interfaces for location-based services. / McGee, John; Cullen, Charlie.

2011. Paper presented at Keep an ear on 5th International FKL symposium on soundscape
, Florence, Italy.

Research output: Contribution to conferencePaper

TY - CONF

T1 - The potential role of listening modes in auditory interfaces for location-based services

AU - McGee, John

AU - Cullen, Charlie

PY - 2011/5/20

Y1 - 2011/5/20

N2 - The auditory modality offers several advantages as a means of communication for the purposes of location-based services (LBS), including fast response time [1], low processing and storage overheads [2], and hands/eyes-free mobility. However, with more and more sound-producing technology being used in day-to-day life, the battle for our acoustic attention has led to a steady rise in acoustic noise levels [3]. In an already noisy environment, it is tempting for the sound designer to simply use more volume as a means of gaining the listener’s attention but this creates a vicious circle of noise whereby every sound designer is merely struggling to be heard over the noise of every other sound designer. The field of soundscape theory however, may offer some potential solutions in this regard. Soundscape theory, as described by Schafer [4, 5] and Truax [6], considers sound from a more holistic point of view and the concept of listening modes considers the different levels of attention we pay to auditory stimuli depending on context and location within the soundscape. While several different theoretical listening modes have been proposed across the various acoustic disciplines, there is still a need for empirical data to support the existence of these modes. One area in which there is a certain amount of empirical data is in relation to spectral bandwidth and what Krause has called his ‘niche theory’ [7-9]. Niche theory describes the way in which different species appear to occupy discrete frequency bandwidths within the soundscapes of natural habitats; it is argued that this natural balance keeps redundant noise to a minimum and enables more efficient acoustic communication. If the principles observed in niche theory were to be observed in human listening behavior then a new approach to sound design might be possible whereby auditory stimuli exploit specific frequency bandwidths in order to maximize information exchange without necessarily raising noise levels. In this paper we outline a proposed experiment whereby listeners are asked to engage in a foreground task that encourages competitive conversation while also attending to a background listening task whereby participants have to acknowledge background non-speech sound bursts of varying spectral bandwidth presented at random intervals. Our aim is to compare the spectrograms of foreground conversations and background stimuli to see if relative spectral bandwidth has any discernible effect on stimulus identification success rate and response time.

AB - The auditory modality offers several advantages as a means of communication for the purposes of location-based services (LBS), including fast response time [1], low processing and storage overheads [2], and hands/eyes-free mobility. However, with more and more sound-producing technology being used in day-to-day life, the battle for our acoustic attention has led to a steady rise in acoustic noise levels [3]. In an already noisy environment, it is tempting for the sound designer to simply use more volume as a means of gaining the listener’s attention but this creates a vicious circle of noise whereby every sound designer is merely struggling to be heard over the noise of every other sound designer. The field of soundscape theory however, may offer some potential solutions in this regard. Soundscape theory, as described by Schafer [4, 5] and Truax [6], considers sound from a more holistic point of view and the concept of listening modes considers the different levels of attention we pay to auditory stimuli depending on context and location within the soundscape. While several different theoretical listening modes have been proposed across the various acoustic disciplines, there is still a need for empirical data to support the existence of these modes. One area in which there is a certain amount of empirical data is in relation to spectral bandwidth and what Krause has called his ‘niche theory’ [7-9]. Niche theory describes the way in which different species appear to occupy discrete frequency bandwidths within the soundscapes of natural habitats; it is argued that this natural balance keeps redundant noise to a minimum and enables more efficient acoustic communication. If the principles observed in niche theory were to be observed in human listening behavior then a new approach to sound design might be possible whereby auditory stimuli exploit specific frequency bandwidths in order to maximize information exchange without necessarily raising noise levels. In this paper we outline a proposed experiment whereby listeners are asked to engage in a foreground task that encourages competitive conversation while also attending to a background listening task whereby participants have to acknowledge background non-speech sound bursts of varying spectral bandwidth presented at random intervals. Our aim is to compare the spectrograms of foreground conversations and background stimuli to see if relative spectral bandwidth has any discernible effect on stimulus identification success rate and response time.

M3 - Paper

ER -

McGee J, Cullen C. The potential role of listening modes in auditory interfaces for location-based services. 2011. Paper presented at Keep an ear on 5th International FKL symposium on soundscape
, Florence, Italy.