Synergistic collagenase expression and cartilage collagenolysis are phosphatidylinositol 3-kinase/Akt signaling-dependent

Gary J. Litherland, Craig Dixon, Rachel L. Lakey, Timothy Robson, Debra Jones, David A. Young, Tim E. Cawston, Andrew D. Rowan

Research output: Contribution to journalArticlepeer-review

38 Citations (Scopus)

Abstract

The phosphatidylinositol 3-kinase (PI3K) signaling pathway has emerged as a major regulator of cellular functions and has been implicated in several pathologies involving remodeling of extracellular matrix ( ECM). The end stage of inflammatory joint diseases is characterized by excessive ECM catabolism, and in this study we assess the role of PI3K signaling in the induction of collagenolytic matrix metalloproteinases ( MMPs) in human chondrocytes. We used the most potent cytokine stimulus reported to promote cartilage ECM catabolism, namely interleu-kin-1 ( IL-1) in combination with oncostatin M( OSM). Both OSM and IL-6 ( in the presence of its soluble receptor), but not IL-1 nor leukemia inhibitory factor, induced Akt phosphorylation in human chondrocytes. Inhibition of PI3K signaling using LY294002 blocked IL-1 + OSM-mediated Akt phosphorylation, induction of MMP-1 and MMP-13, and cartilage collagenolysis. To further explore the role of downstream substrates within the PI3K pathway, complementary use of small molecule inhibitors and specific small interfering RNAs demonstrated that the PI3K subunit p110 alpha and Akt1 were required for MMP-1 mRNA induction. MMP-13 induction was also reduced by loss of function of these molecules and by a lack of p110 delta, 3-phosphoinositide-dependent kinase-1 or Akt3. We therefore propose that the activities of specific elements of the PI3K signaling pathway, including Akt, are necessary for the synergistic induction of MMP-1 and MMP- 13 and the cartilage breakdown stimulated by IL-1 + OSM. Our data provide new insight into the mechanism of synergy between IL-1 and OSM and highlight new therapeutic targets for inflammatory joint diseases that aim to repress the expression of collagenases.
Original languageEnglish
Pages (from-to)14221-14229
Number of pages9
JournalJournal of Biological Chemistry
Volume283
Issue number21
DOIs
Publication statusPublished - 23 May 2008
Externally publishedYes

Fingerprint

Dive into the research topics of 'Synergistic collagenase expression and cartilage collagenolysis are phosphatidylinositol 3-kinase/Akt signaling-dependent'. Together they form a unique fingerprint.

Cite this