Study of structural change in Wyodak coal in high-pressure CO2 by small angle neutron scattering

Mojtaba Mirzaeian, Peter J. Hall, Hasan Fathinejad Jirandehi

Research output: Contribution to journalArticle

15 Citations (Scopus)

Abstract

Small angle neutron scattering (SANS) has been applied to examine the effect of high-pressure CO2 on the structure of Wyodak coal. Significant decrease in the scattering intensities on the exposure of the coal to high-pressure CO2 showed that high-pressure CO2 rapidly gets adsorbed on the coal and reaches to all the pores in the structure. This is confirmed by strong and steep exothermic peaks observed on DSC scans during coal/CO2 interactions. In situ small angle neutron scattering on coal at high-pressure CO2 atmosphere showed an increase in scattering intensities with time suggesting that after adsorption, high-pressure CO2 immediately begins to diffuse into the coal matrix, changes the macromolecular structure of the coal, swells the matrix, and probably creates microporosity in coal structure by extraction of volatile components from coal. Significant decrease in the glass transition temperature of coal caused by high-pressure CO2 also confirms that CO2 at elevated pressures dissolve in the coal matrix, results in significant plasticization and physical rearrangement of the coal's macromolecular structure.
Original languageEnglish
Pages (from-to)5271-5281
Number of pages11
JournalJournal of Materials Science
Volume45
Issue number19
DOIs
Publication statusPublished - 2010
Externally publishedYes

    Fingerprint

Keywords

  • Differential Scanning Calorimetry
  • Coal Seam
  • Coal Sample
  • Small Angle Neutron Scattering
  • Coal Matrix

Cite this