Abstract
Solar photovoltaic systems convert the solar energy into electric power. Many factors affect the solar power generation through solar cells. The factors include atmospheric conditions, trajectory of sun, weather conditions, cloud cover and the physical properties of solar energy plant that converts solar energy to electric power. The output power is mainly influenced by the incoming radiation and the characteristics of solar panel. Accurate and correct knowledge about these factors guarantees a reliable solar generation forecasting model. This paper proposes a solution for solar power generation forecasting by incorporating the effecting parameters with the use of Recurrent Neural Network (RNN)model. The RNN is further optimized by Levenberg-Marquardt Algorithm (LMA)to get better accuracy of forecasts. The obtained results confirm the suitability of proposed approach.
Original language | English |
---|---|
Title of host publication | IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society |
Place of Publication | Piscataway, NJ |
Publisher | IEEE |
ISBN (Electronic) | 9781509066841 |
DOIs | |
Publication status | Published - 31 Dec 2018 |