Single-particle and collective excitations in the transitional nucleus 166Os

S. Stolze, T. Grahn*, R. Julin, D. T. Joss, K. Andgren, K. Auranen, S. Bönig, D. Cox, I. G. Darby, M. Doncel, S. Eeckhaudt, P. T. Greenlees, B. Hadinia, A. Herzáň, U. Jakobsson, P. Jones, S. Juutinen, S. Ketelhut, J. Konki, T. KröllA.-P. Leppanen, M. Nyman, R. D. Page, J. Pakarinen, J. Partanen, C. G. McPeake, D. O'Donnell, P. Peura, P. Rahkila, P. Ruotsalainen, M. Sandzelius, J. Sarén, B. Saygi, C. Scholey, J. Simpson, J. Sorri, M. J. Taylor, A. Thornthwaite, J. Uusitalo

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

The mean lifetimes of the lowest energy 2+, 8+ and 9 states in 166Os have been measured using the recoil distance Doppler-shift method in conjunction with a selective recoil-decay tagging technique. These measurements extend studies into the most neutron-deficient mass region accessible to current experimental methods. The B(E2; 2+ → 0+) = 7(2) W.u. extracted from these measurements is markedly lower than those observed in the heavier even-mass Os isotopes. The 8+ and 9 states yield reduced transition probabilities that are consistent with single-particle transitions. While these values may indicate a departure from collective structure, the level scheme and the underlying nuclear configurations can also be interpreted in terms of a simple collective picture. This contrasting behaviour suggests an intriguing dichotomy in the description of heavy transitional nuclei.
Original languageEnglish
Article number125101
Number of pages14
JournalJournal of Physics G: Nuclear and Particle Physics
Volume48
Issue number12
DOIs
Publication statusPublished - 11 Oct 2021
Externally publishedYes

Keywords

  • mean lifetimes
  • RDDS measurements
  • gamma-ray spectroscopy
  • collectivity
  • single-particle states
  • electromagnetic transitions

Fingerprint

Dive into the research topics of 'Single-particle and collective excitations in the transitional nucleus <sup>166</sup>Os'. Together they form a unique fingerprint.

Cite this