Shock-induced olivine-ringwoodite transformation in the shock vein of chondrite GRV053584

Feng Yin, Zhiwei Liao, Andrew Hursthouse, Dequi Dai

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Shock metamorphism of minerals in meteorites could help to understand the shock history of its parent body and also provide a window on the interior of the Earth. Although shock features in olivine have been well known within and adjacent to shock melt veins and shock melt pockets in meteorites, there are processes that are not yet completely understood. Ringwoodite is formed by crystallization from olivine melts or solid-state phase transformation of olivine. Typically olivine clasts with a ringwoodite rim around an olivine core have been documented from only a handful of meteorites. Here we report results from GRV053684, a highly shocked L6 chondrite that was collected by Chinese Antarctic Research Expedition in 2006 to Antarctica. The investigation of the shock pressure history and the transformation mechanism of olivine to ringwoodite using backscattered electron images, Raman spectra, major element quantitative analyses, and quantitative wavelength-dispersive spectrometry elemental X-ray maps. Ringwoodite in the shock melt vein generally displays as Fe-rich (Fa37-43) polycrystalline rims around Fe-poor (Fa11-20) olivine core and as small individual clasts embedded in shock melt vein matrix. The difference in FeO between ringwoodite rim and olivine core implies that Fe was preferentially partitioned to ringwoodite. The occurrence of ringwoodite and maskelynite indicates a shock pressure ~20 GPa. The FeO and MgO diffusion indicates the transformation process of olivine to ringwoodite is a diffusion-controlled nucleation and growth. The spatial association between ringwoodite and the shock melt vein matrix suggests high temperature plays a key role in prompting phase transformation.
Original languageEnglish
Article number139
Number of pages11
JournalMinerals
Volume8
Issue number139
DOIs
Publication statusPublished - 1 Apr 2018

Keywords

  • shock metamorphism
  • olivine
  • ringwoodite
  • phase transformation

Fingerprint Dive into the research topics of 'Shock-induced olivine-ringwoodite transformation in the shock vein of chondrite GRV053584'. Together they form a unique fingerprint.

  • Activities

    • 1 Types of Award - Fellowship awarded competitively

    High End Expert Scholarship – Hunan Regional Government

    Andrew Hursthouse (Recipient)

    20162019

    Activity: OtherTypes of Award - Fellowship awarded competitively

    Cite this