Abstract
Sequencing studies showed that the gamma-glutamylcysteine synthetase (gamma-GCS) heavy chain genes from sodium stibogluconate (SSG)-resistant (SSG-R) and SSG-susceptible (SSG-S) Leishmania donovani strains were identical, indicating that SSG resistance was related to quantitative differences in gamma-GCS expression rather than gene interstrain polymorphisms. In vitro infection of murine macrophages with the SSG-R strain, but not the SSG-S strain, down regulated expression of host gamma-GCS, which would result in a reduction in intramacrophage glutathione (GSH) levels and promote an oxidative intramacrophage environment. This would inhibit, or minimize, the reduction of SSG pentavalent antimony to its more toxic trivalent form. Macrophage studies showed that the SSG-R strain expressed higher levels of gamma-GCS compared to the SSG-S strain, which would result in higher GSH levels, giving increased protection against oxidative stress and facilitating SSG efflux. However a similar differential effect on host and parasite gamma-GCS expression was not obtained when using tissues from infected mice. In this case gamma-GCS expression was organ and strain dependent for both the host and the parasite, indicating that environmental conditions have a profound effect on gamma-GCS expression. Consistent with the proposed mechanism from in vitro studies, increasing tissue GSH levels in the presence of SSG by cotreatment of L. donovani-infected mice with SSG solution and GSH incorporated into nonionic surfactant vesicles was more effective in reducing liver, spleen, and bone marrow parasite burdens than monotherapy with SSG. Together, these results indicate that SSG resistance is associated with manipulation of both host and parasite GSH levels by L. donovani.
Original language | English |
---|---|
Pages (from-to) | 88-95 |
Number of pages | 8 |
Journal | Antimicrobial Agents and Chemotherapy |
Volume | 50 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 2006 |
Externally published | Yes |
Keywords
- Animals
- Antimony Sodium Gluconate
- Drug Resistance
- Glutamate-Cysteine Ligase
- Leishmania donovani
- Leishmaniasis, Visceral
- Mice
- Mice, Inbred BALB C