TY - JOUR
T1 - Research on regional differences and influencing factors of Chinese industrial green technology innovation efficiency based on Dagum Gini coefficient decomposition
AU - Zhang, Liyuan
AU - Ma, Xiang
AU - Ock, Young-Seok
AU - Qing, Lingli
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/1/12
Y1 - 2022/1/12
N2 - Industrial green technology innovation has become an important content in achieving high-quality economic growth and comprehensively practicing the new development concept in the new era. This paper measures the efficiency of industrial green technology innovation and regional differences based on Chinese provincial panel data from 2005 to 2018, using a combination of the super efficiency slacks-based measure (SBM) model for considering undesirable outputs and the Dagum Gini coefficient method, and discusses and analyses the factors influencing industrial green technology innovation efficiency by constructing a spatial econometric model. The results show that: firstly, industrial green technology innovation efficiency in China shows a relatively stable development trend, going through three stages: “stationary period”, “recession period” and “growth period”. However, the efficiency gap between different regions is obvious, specifically in the eastern > central > western regions of China, and the industrial green technology efficiency innovation in the central and western regions is lower than the national average. Secondly, regional differences in the efficiency of industrial green technology innovation in China are evident but tend to narrow overall, with the main reason for the overall difference being regional differences. In terms of intra-regional variation, variation within the eastern region is relatively stable, variation within the central region is relatively low and shows an inverted ‘U’ shaped trend, and variation within the western region is high and shows a fluctuating downward trend. Thirdly, the firm size, government support, openness to the outside world, environmental regulations and education levels contribute to the efficiency of industrial green technology innovation. In addition, the industrial structure hinders the efficiency of industrial green technology innovation, and each influencing factor has different degrees of spatial spillover effects.
AB - Industrial green technology innovation has become an important content in achieving high-quality economic growth and comprehensively practicing the new development concept in the new era. This paper measures the efficiency of industrial green technology innovation and regional differences based on Chinese provincial panel data from 2005 to 2018, using a combination of the super efficiency slacks-based measure (SBM) model for considering undesirable outputs and the Dagum Gini coefficient method, and discusses and analyses the factors influencing industrial green technology innovation efficiency by constructing a spatial econometric model. The results show that: firstly, industrial green technology innovation efficiency in China shows a relatively stable development trend, going through three stages: “stationary period”, “recession period” and “growth period”. However, the efficiency gap between different regions is obvious, specifically in the eastern > central > western regions of China, and the industrial green technology efficiency innovation in the central and western regions is lower than the national average. Secondly, regional differences in the efficiency of industrial green technology innovation in China are evident but tend to narrow overall, with the main reason for the overall difference being regional differences. In terms of intra-regional variation, variation within the eastern region is relatively stable, variation within the central region is relatively low and shows an inverted ‘U’ shaped trend, and variation within the western region is high and shows a fluctuating downward trend. Thirdly, the firm size, government support, openness to the outside world, environmental regulations and education levels contribute to the efficiency of industrial green technology innovation. In addition, the industrial structure hinders the efficiency of industrial green technology innovation, and each influencing factor has different degrees of spatial spillover effects.
KW - industrial green technology innovation efficiency
KW - Dagum Gini coefficient
KW - spatial econometrics
KW - regional differences
UR - http://www.scopus.com/inward/record.url?scp=85122889264&partnerID=8YFLogxK
U2 - 10.3390/land11010122
DO - 10.3390/land11010122
M3 - Article
SN - 2073-445X
VL - 11
SP - 122
JO - Land
JF - Land
IS - 1
M1 - 122
ER -