TY - JOUR
T1 - Portable UWB RADAR sensing system for transforming subtle chest movement into actionable micro-doppler signatures to extract respiratory rate exploiting ResNet algorithm
AU - Saeed, Umer
AU - Shah, Syed Yaseen
AU - Alotaibi, Abdullah Alhumaidi
AU - Althobaiti, Turke
AU - Ramzan, Naeem
AU - Abbasi, Qammer H.
AU - Shah, Syed Aziz
PY - 2021/10/15
Y1 - 2021/10/15
N2 - Contactless or non-invasive technology for the monitoring of anomalies in an inconspicuous and distant environment has immense significance in health-related applications, in particular COVID-19 symptoms detection, diagnosis, and monitoring. Contactless methods are crucial specifically during the COVID-19 epidemic as they require the least amount of involvement from infected individuals as well as healthcare personnel. According to recent medical research studies regarding coronavirus, individuals infected with novel COVID-19-Delta variant undergo elevated respiratory rates due to extensive infection in the lungs. This appalling situation demands constant real-time monitoring of respiratory patterns, which can help in avoiding any pernicious circumstances. In this paper, an Ultra-Wideband RADAR sensor “XeThru X4M200” is exploited to capture vital respiratory patterns. In the low and high frequency band, X4M200 operates within the 6.0-8.5 GHz and 7.25-10.20 GHz band, respectively. The experimentation is conducted on six distinct individuals to replicate a realistic scenario of irregular respiratory rates. The data is obtained in the form of spectrograms by carrying out normal (eupnea) and abnormal (tachypnea) respiratory. The collected spectrogram data is trained, validated, and tested using a cutting-edge deep learning technique called Residual Neural Network or ResNet. The trained ResNet model’s performance is assessed using the confusion matrix, precision, recall, F1-score, and classification accuracy. The unordinary skip connection process of the deep ResNet algorithm significantly reduces the underfitting and overfitting problem, resulting in a classification accuracy rate of up to 90%.
AB - Contactless or non-invasive technology for the monitoring of anomalies in an inconspicuous and distant environment has immense significance in health-related applications, in particular COVID-19 symptoms detection, diagnosis, and monitoring. Contactless methods are crucial specifically during the COVID-19 epidemic as they require the least amount of involvement from infected individuals as well as healthcare personnel. According to recent medical research studies regarding coronavirus, individuals infected with novel COVID-19-Delta variant undergo elevated respiratory rates due to extensive infection in the lungs. This appalling situation demands constant real-time monitoring of respiratory patterns, which can help in avoiding any pernicious circumstances. In this paper, an Ultra-Wideband RADAR sensor “XeThru X4M200” is exploited to capture vital respiratory patterns. In the low and high frequency band, X4M200 operates within the 6.0-8.5 GHz and 7.25-10.20 GHz band, respectively. The experimentation is conducted on six distinct individuals to replicate a realistic scenario of irregular respiratory rates. The data is obtained in the form of spectrograms by carrying out normal (eupnea) and abnormal (tachypnea) respiratory. The collected spectrogram data is trained, validated, and tested using a cutting-edge deep learning technique called Residual Neural Network or ResNet. The trained ResNet model’s performance is assessed using the confusion matrix, precision, recall, F1-score, and classification accuracy. The unordinary skip connection process of the deep ResNet algorithm significantly reduces the underfitting and overfitting problem, resulting in a classification accuracy rate of up to 90%.
KW - covid-19
KW - UWB RADAR sensor
KW - contactless healthcare
KW - respiratory monitoring
KW - deep learning
KW - ResNet
U2 - 10.1109/JSEN.2021.3110367
DO - 10.1109/JSEN.2021.3110367
M3 - Article
VL - 21
SP - 23518
EP - 23526
JO - IEEE Sensors Journal
JF - IEEE Sensors Journal
SN - 1530-437X
IS - 20
M1 - 3110367
ER -