Abstract
Refractive index (n) and extinction coefficient (k) of Zn3N2 layers deposited by radio-frequency magnetron sputtering at temperatures (Ts) between 298 and 523 K were determined by spectroscopic ellipsometry. Results showed strong variations of the apparent optical constants with Ts and time attributed to surface effects. Resonant Rutherford backscattering and spectroscopic ellipsometry confirmed the formation of a ZnO surface layer provoked by the ambient exposure. Samples grown at low Ts presented the lowest surface roughness and exhibited 2.0 < n < 2.8 and 0.6 < k < 1.0 in the 1.5–4.5 eV energy range. The extracted n and k values accurately reproduced the reflectance properties.
Original language | English |
---|---|
Article number | 232112 |
Journal | Applied Physics Letters |
Volume | 99 |
Issue number | 23 |
DOIs | |
Publication status | Published - 8 Dec 2011 |
Externally published | Yes |