Memory Footprint Reduction for Power-Efficient Realization of 2-D Finite Impulse Response Filters

Basant K. Mohanty, Pramod K. Meher, Somaya Al-Maadeed, Abbes Amira

Research output: Contribution to journalArticlepeer-review

34 Citations (Scopus)


We have analyzed memory footprint and combinational complexity to arrive at a systematic design strategy to derive area-delay-power-efficient architectures for two-dimensional (2-D) finite impulse response (FIR) filter. We have presented novel blockbased structures for separable and non-separable filters with less memory footprint by memory sharing and memory-reuse along with appropriate scheduling of computations and design of storage architecture. The proposed structures involve times less storage per output (SPO), and nearly times less energy consumption per output (EPO) compared with the existing structures, where is the input block-size. They involve times more arithmetic resources than the best of the corresponding existing structures, and produce times more throughput with less memory band-width (MBW) than others. We have also proposed separate generic structures for separable and non-separable filter-banks, and a unified structure of filter-bank constituting symmetric and general filters. The proposed unified structure for 6 parallel filters involves nearly times moremultipliers, timesmore adders, less registers than similar existing unified structure, and computes times more filter outputs per cycle with times less MBW than the existing design, where is FIR filter size in each dimension. ASIC synthesis result shows that for filter size (4 x 4), input-block size, and image-size (512 x 512), proposed block-based non-separable and generic non-separable structures, respectively, involve 5.95 times and 11.25 times less area-delay-product (ADP), and 5.81 times and 15.63 times less EPO than the corresponding existing structures. The proposed unified structure involves 4.64 times less ADP and 9.78 times less EPO than the corresponding existing structure.
Original languageEnglish
Pages (from-to)120-133
JournalIEEE Transactions on Circuits and Systems I-regular Papers
Issue number1
Publication statusPublished - Jan 2014


  • Block processing
  • 2-dimensional (2-D) finite impulse response (FIR)
  • digital filters
  • VLSI architecture


Dive into the research topics of 'Memory Footprint Reduction for Power-Efficient Realization of 2-D Finite Impulse Response Filters'. Together they form a unique fingerprint.

Cite this