TY - GEN
T1 - Live demonstration
T2 - energy autonomous electronic skin for robotics
AU - García Núñez, Carlos
AU - Taube, William
AU - Liang, Xiangpeng
AU - Dahiya, Ravinder
N1 - Live Demo.
PY - 2017/12/25
Y1 - 2017/12/25
N2 - An electronic skin (e-skin) is an artificial smart skin that can provide similar sense of touch to robots and artificial prostheses by mimicking some of the features of human skin. In this regard, tactile e-skin is needed for accurate haptic perception in robots, amputees, as well as, wearable electronics. For example, a flexible e-skin provided with touch/pressure sensors will allow robots to detect the strength and location of the pressure exerted on the skin surface by surrounding objects. Energy autonomy, or also called self-powering, is also a critical feature for an e-skin, enabling portability and longer operation times without human intervention. Further, making the e-skin transparent adds an extra dimension in the functional design space of e-skin, allowing the integration of a solar cell underneath the skin while preserving light energy harvesting. Recent advances in photovoltaics are oriented towards the development of solar cells on stretchable/flexible substrates which will benefit the realization of suggested self-powered technology. Accordingly, the novel approach presented in this demo consists in a vertical layered stack structure, comprising a solar cell attached to the back plane of a transparent tactile skin, where e-skin transparency being a crucial feature that allows light pass through, making the building-block unique, and opening a new promising line of energy autonomous devices for portable flexible electronics.
AB - An electronic skin (e-skin) is an artificial smart skin that can provide similar sense of touch to robots and artificial prostheses by mimicking some of the features of human skin. In this regard, tactile e-skin is needed for accurate haptic perception in robots, amputees, as well as, wearable electronics. For example, a flexible e-skin provided with touch/pressure sensors will allow robots to detect the strength and location of the pressure exerted on the skin surface by surrounding objects. Energy autonomy, or also called self-powering, is also a critical feature for an e-skin, enabling portability and longer operation times without human intervention. Further, making the e-skin transparent adds an extra dimension in the functional design space of e-skin, allowing the integration of a solar cell underneath the skin while preserving light energy harvesting. Recent advances in photovoltaics are oriented towards the development of solar cells on stretchable/flexible substrates which will benefit the realization of suggested self-powered technology. Accordingly, the novel approach presented in this demo consists in a vertical layered stack structure, comprising a solar cell attached to the back plane of a transparent tactile skin, where e-skin transparency being a crucial feature that allows light pass through, making the building-block unique, and opening a new promising line of energy autonomous devices for portable flexible electronics.
U2 - 10.1109/ICSENS.2017.8234033
DO - 10.1109/ICSENS.2017.8234033
M3 - Conference contribution
SN - 978-1-5090-1013-4
BT - 2017 IEEE Sensors Proceedings
PB - IEEE
ER -