Laser surface modification of polymeric surfaces for microbiological applications

A. Gillett, D.G. Waugh, J. Lawrence

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

6 Citations (Scopus)

Abstract

Bacteria have evolved to become proficient at adapting to not only their extracellular surroundings but also their environmental conditions, which has made it possible for them to attach and form biofilms in nearly all habitats where life can exist. This has resulted in major health concerns and economic burdens in both hospital and industrial environments ( Donlan, 2002; Reysenbach and Cady, 2001; Stoodley et al., 2002; Hall-Stoodley et al., 2004; Lewis, 2007; Bryers, 2009; Gubner and Beech, 2000; Scheuerman et al., 1998; Robitaille et al., 2014).

It has been estimated that hospital-acquired infections cost the NHS up to €1000 million per annum ( Bourn, 2000). Microbial activity and biofilms are also well known to cost the UK industry billions of pounds each year due to product contamination, energy losses and equipment damage.

The physical properties of a surface regulate bacterial cell attachment and physiology, therefore, affecting the early stages of biofilm formation. Surfaces which prevent this bacterial fouling through their physical structure represent a key area of research for the development of antibacterial surfaces for many different environments.

Due to its unique specific properties, laser surface treatment provides a key technique in the fight to produce an antifouling surface for a wide application of surfaces. Laser modification of polymeric surfaces for the prevention of bacterial attachment could provide a high value technique for producing nanostructured surfaces with superhydrophobicity, which could prevent the attachment of bacteria to polymeric biomaterial and other important surfaces.

This chapter details the factors surrounding bacterial attachment to surfaces and the subsequent development of the complex biofilm phenomenon and their association with polymeric biomaterials. The chapter also discusses potential laser surface modifications for the prevention and/or decontamination of biomaterials.
Original languageEnglish
Title of host publicationLaser Surface Modification of Biomaterials
Subtitle of host publicationTechniques and Applications
EditorsRui Vilar
Place of PublicationNetherlands
PublisherElsevier B.V.
Chapter7
Pages197-220
Number of pages24
ISBN (Print)9780081008836
DOIs
Publication statusPublished - 22 Apr 2016
Externally publishedYes

Keywords

  • antibiofouling
  • biofilms
  • biomaterials
  • laser surface treatment

Fingerprint

Dive into the research topics of 'Laser surface modification of polymeric surfaces for microbiological applications'. Together they form a unique fingerprint.

Cite this