Isospin mixing and the cubic isobaric multiplet mass equation in the lowest T=2, A=32 quintet

M. Kamil, S. Triambak*, A. Magilligan, A. Garcia, B. A. Brown, P. Adsley, V. Bildstein, C. Burbadge, A. Diaz Varela, T. Faestermann, P. E. Garrett, R. Hertenberger, N. Y. Kheswa, K. G. Leach, R. Lindsay, D. J. Marín-Lámbarri, F. Ghazi Moradi, N. J. Mukwevho, R. Neveling, J. C. Nzobadila OndzeP. Papka, L. Pellegri, V. Pesudo, B. M. Rebeiro, M. Scheck, F. D. Smit, H.-F. Wirth

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


The isobaric multiplet mass equation (IMME) is known to break down in the first T=2,A=32 isospin quintet. In this work we combine high-resolution experimental data with state-of-the-art shell-model calculations to investigate isospin mixing as a possible cause for this violation. The experimental data are used to validate isospin-mixing matrix elements calculated with newly developed shell-model Hamiltonians. Our analysis shows that isospin mixing with nonanalog T=1states contributes to the IMME breakdown, making the requirement of an anomalous cubic term inevitable for the multiplet.

Original languageEnglish
Article numberL061303
Number of pages6
JournalPhysical Review C
Issue number6
Publication statusPublished - 15 Dec 2021


Dive into the research topics of 'Isospin mixing and the cubic isobaric multiplet mass equation in the lowest <i>T</i>=2, <i>A</i>=32 quintet'. Together they form a unique fingerprint.

Cite this