Abstract
This study investigates the effects of fatigue material data and finite element types on accuracy of residual life assessments under high cycle fatigue. The bending of cross-beam connections is simulated in ANSYS Workbench for different combinations of structural member shapes made of a typical structural steel. The stress analysis of weldments with specific dimensions and loading applied is implemented using solid and shell elements. The stress results are transferred to the fatigue code nCode DesignLife for the residual life prediction. Considering the effects of mean stress using FKM approach, bending and thickness according to BS 7608:2014, fatigue life is predicted using the Volvo method and stress integration rules from ASME Boiler & Pressure Vessel Code. Three different pairs of S-N curves are considered in this work including generic seam weld curves and curves for the equivalent Japanese steel JIS G3106-SM490B. The S-N curve parameters for the steel are identified using the experimental data available from NIMS fatigue data sheets employing least square method and considering thickness and mean stress corrections. The numerical predictions are compared to the available experimental results indicating the most preferable fatigue data input, range of applicability and FE-model formulation to achieve the best accuracy.
Original language | English |
---|---|
Article number | 012025 |
Number of pages | 14 |
Journal | Journal of Physics: Conference Series |
Volume | 843 |
DOIs | |
Publication status | Published - 2 Jun 2017 |
Event | 6th International Conference on Fracture Fatigue and Wear - University of Porto, Porto, Portugal Duration: 26 Jul 2017 → 27 Jul 2017 http://www.ffw.ugent.be/ |
Keywords
- fatigue (materials)
- steels
- stress analysis
- pressure vessels
- welds
- structural members