Intelligent reflecting surface-based non-LOS human activity recognition for next-generation 6G-enabled healthcare system

Umer Saeed*, Syed Aziz Shah, Muhammad Zakir Khan, Abdullah Alhumaidi Alotaibi, Turke Althobaiti, Naeem Ramzan, Qammer H. Abbasi

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)
25 Downloads (Pure)

Abstract

Human activity monitoring is a fascinating area of research to support autonomous living in the aged and disabled community. Cameras, sensors, wearables, and non-contact microwave sensing have all been suggested in the past as methods for identifying distinct human activities. Microwave sensing is an approach that has lately attracted much interest since it has the potential to address privacy problems caused by cameras and discomfort caused by wearables, especially in the healthcare domain. A fundamental drawback of the current microwave sensing methods such as radar is non-line-of-sight and multi-floor environments. They need precise and regulated conditions to detect activity with high precision. In this paper, we have utilised the publicly available online database based on the intelligent reflecting surface (IRS) system developed at the Communications, Sensing and Imaging group at the University of Glasgow, UK (references 39 and 40). The IRS system works better in the multi-floor and non-line-of-sight environments. This work for the first time uses algorithms such as support vector machine Bagging and Decision Tree on the publicly available IRS data and achieves better accuracy when a subset of the available data is considered along specific human activities. Additionally, the work also considers the processing time taken by the classier in training stage when exposed to the IRS data which was not previously explored.

Original languageEnglish
Article number7175
Number of pages14
JournalSensors
Volume22
Issue number19
DOIs
Publication statusPublished - 21 Sept 2022

Keywords

  • 6G
  • intelligent reflecting surface
  • machine learning
  • next-generation healthcare
  • RF sensing
  • software-defined radio

Fingerprint

Dive into the research topics of 'Intelligent reflecting surface-based non-LOS human activity recognition for next-generation 6G-enabled healthcare system'. Together they form a unique fingerprint.

Cite this