HIIT produces increases in muscle power and free testosterone in male masters athletes

P. Herbert, L.D. Hayes, N.F. Sculthorpe, F.M. Grace

Research output: Contribution to journalArticle

Abstract

High-intensity interval training (HIIT) improves peak power output (PPO) in sedentary aging men but has not been examined in masters endurance athletes. Therefore, we investigated whether a six-week program of low-volume HIIT would (i) improve PPO in masters athletes and (ii) whether any change in PPO would be associated with steroid hormone perturbations. Seventeen male masters athletes (60 ± 5 years) completed the intervention, which comprised nine HIIT sessions over six weeks. HIIT sessions involved six 30-s sprints at 40% PPO, interspersed with 3 min active recovery. Absolute PPO (799 ± 205 W and 865 ± 211 W) and relative PPO (10.2 ± 2.0 W/kg and 11.0 ± 2.2 W/kg) increased from pre- to post-HIIT respectively (P < 0.001, Cohen’s d = 0.32−0.38). No significant change was observed for total testosterone (15.2 ± 4.2 nmol/L to 16.4 ± 3.3 nmol/L (P = 0.061, Cohen’s d = 0.32)), while a small increase in free testosterone occurred following HIIT (7.0 ± 1.2 ng/dL to 7.5 ± 1.1 ng/dL pre- to post-HIIT (P = 0.050, Cohen’s d = 0.40)). Six weeks’ HIIT improves PPO in masters athletes and increases free testosterone. Taken together, these data indicate there is a place for carefully timed HIIT epochs in regimes of masters athletes.
Original languageEnglish
Pages (from-to)430-436
JournalEndocrine Connections
Volume6
Issue number7
DOIs
Publication statusPublished - 1 Oct 2017

Fingerprint

Athletes
Testosterone
Muscles
High-Intensity Interval Training
Steroids
Hormones

Cite this

Herbert, P. ; Hayes, L.D. ; Sculthorpe, N.F. ; Grace, F.M. . / HIIT produces increases in muscle power and free testosterone in male masters athletes. In: Endocrine Connections. 2017 ; Vol. 6, No. 7. pp. 430-436.
@article{4d1c6b2e9424459894fbba6aaeb00ffb,
title = "HIIT produces increases in muscle power and free testosterone in male masters athletes",
abstract = "High-intensity interval training (HIIT) improves peak power output (PPO) in sedentary aging men but has not been examined in masters endurance athletes. Therefore, we investigated whether a six-week program of low-volume HIIT would (i) improve PPO in masters athletes and (ii) whether any change in PPO would be associated with steroid hormone perturbations. Seventeen male masters athletes (60 ± 5 years) completed the intervention, which comprised nine HIIT sessions over six weeks. HIIT sessions involved six 30-s sprints at 40{\%} PPO, interspersed with 3 min active recovery. Absolute PPO (799 ± 205 W and 865 ± 211 W) and relative PPO (10.2 ± 2.0 W/kg and 11.0 ± 2.2 W/kg) increased from pre- to post-HIIT respectively (P < 0.001, Cohen’s d = 0.32−0.38). No significant change was observed for total testosterone (15.2 ± 4.2 nmol/L to 16.4 ± 3.3 nmol/L (P = 0.061, Cohen’s d = 0.32)), while a small increase in free testosterone occurred following HIIT (7.0 ± 1.2 ng/dL to 7.5 ± 1.1 ng/dL pre- to post-HIIT (P = 0.050, Cohen’s d = 0.40)). Six weeks’ HIIT improves PPO in masters athletes and increases free testosterone. Taken together, these data indicate there is a place for carefully timed HIIT epochs in regimes of masters athletes.",
author = "P. Herbert and L.D. Hayes and N.F. Sculthorpe and F.M. Grace",
year = "2017",
month = "10",
day = "1",
doi = "10.1530/EC-17-0159",
language = "English",
volume = "6",
pages = "430--436",
journal = "Endocrine Connections",
issn = "2049-3614",
publisher = "Bioscientifica Ltd",
number = "7",

}

HIIT produces increases in muscle power and free testosterone in male masters athletes. / Herbert, P.; Hayes, L.D.; Sculthorpe, N.F.; Grace, F.M. .

In: Endocrine Connections, Vol. 6, No. 7, 01.10.2017, p. 430-436.

Research output: Contribution to journalArticle

TY - JOUR

T1 - HIIT produces increases in muscle power and free testosterone in male masters athletes

AU - Herbert, P.

AU - Hayes, L.D.

AU - Sculthorpe, N.F.

AU - Grace, F.M.

PY - 2017/10/1

Y1 - 2017/10/1

N2 - High-intensity interval training (HIIT) improves peak power output (PPO) in sedentary aging men but has not been examined in masters endurance athletes. Therefore, we investigated whether a six-week program of low-volume HIIT would (i) improve PPO in masters athletes and (ii) whether any change in PPO would be associated with steroid hormone perturbations. Seventeen male masters athletes (60 ± 5 years) completed the intervention, which comprised nine HIIT sessions over six weeks. HIIT sessions involved six 30-s sprints at 40% PPO, interspersed with 3 min active recovery. Absolute PPO (799 ± 205 W and 865 ± 211 W) and relative PPO (10.2 ± 2.0 W/kg and 11.0 ± 2.2 W/kg) increased from pre- to post-HIIT respectively (P < 0.001, Cohen’s d = 0.32−0.38). No significant change was observed for total testosterone (15.2 ± 4.2 nmol/L to 16.4 ± 3.3 nmol/L (P = 0.061, Cohen’s d = 0.32)), while a small increase in free testosterone occurred following HIIT (7.0 ± 1.2 ng/dL to 7.5 ± 1.1 ng/dL pre- to post-HIIT (P = 0.050, Cohen’s d = 0.40)). Six weeks’ HIIT improves PPO in masters athletes and increases free testosterone. Taken together, these data indicate there is a place for carefully timed HIIT epochs in regimes of masters athletes.

AB - High-intensity interval training (HIIT) improves peak power output (PPO) in sedentary aging men but has not been examined in masters endurance athletes. Therefore, we investigated whether a six-week program of low-volume HIIT would (i) improve PPO in masters athletes and (ii) whether any change in PPO would be associated with steroid hormone perturbations. Seventeen male masters athletes (60 ± 5 years) completed the intervention, which comprised nine HIIT sessions over six weeks. HIIT sessions involved six 30-s sprints at 40% PPO, interspersed with 3 min active recovery. Absolute PPO (799 ± 205 W and 865 ± 211 W) and relative PPO (10.2 ± 2.0 W/kg and 11.0 ± 2.2 W/kg) increased from pre- to post-HIIT respectively (P < 0.001, Cohen’s d = 0.32−0.38). No significant change was observed for total testosterone (15.2 ± 4.2 nmol/L to 16.4 ± 3.3 nmol/L (P = 0.061, Cohen’s d = 0.32)), while a small increase in free testosterone occurred following HIIT (7.0 ± 1.2 ng/dL to 7.5 ± 1.1 ng/dL pre- to post-HIIT (P = 0.050, Cohen’s d = 0.40)). Six weeks’ HIIT improves PPO in masters athletes and increases free testosterone. Taken together, these data indicate there is a place for carefully timed HIIT epochs in regimes of masters athletes.

U2 - 10.1530/EC-17-0159

DO - 10.1530/EC-17-0159

M3 - Article

VL - 6

SP - 430

EP - 436

JO - Endocrine Connections

JF - Endocrine Connections

SN - 2049-3614

IS - 7

ER -