Hadamard upper bound on optimum joint decoding capacity of Wyner Gaussian cellular MAC

Muhammad Zeeshan Shakir, Tariq S. Durrani, Mohamed-Slim Alouini

Research output: Contribution to journalArticle

Abstract

This article presents an original analytical expression for an upper bound on the optimum joint decoding capacity of Wyner circular Gaussian cellular multiple access channel (C-GCMAC) for uniformly distributed mobile terminals (MTs). This upper bound is referred to as Hadamard upper bound (HUB) and is a novel application of the Hadamard inequality established by exploiting the Hadamard operation between the channel fading matrix G and the channel path gain matrix Ω. This article demonstrates that the actual capacity converges to the theoretical upper bound under the constraints like low signal-to-noise ratios and limiting channel path gain among the MTs and the respective base station of interest. In order to determine the usefulness of the HUB, the behavior of the theoretical upper bound is critically observed specially when the inter-cell and the intra-cell time sharing schemes are employed. In this context, we derive an analytical form of HUB by employing an approximation approach based on the estimation of probability density function of trace of Hadamard product of two matrices, i.e., G and Ω. A closed form of expression has been derived to capture the effect of the MT distribution on the optimum joint decoding capacity of C-GCMAC. This article demonstrates that the analytical HUB based on the proposed approximation approach converges to the theoretical upper bound results in the medium to high signal to noise ratio regime and shows a reasonably tighter bound on optimum joint decoding capacity of Wyner GCMAC.
Original languageEnglish
Article number110
Pages (from-to)1-13
Number of pages13
JournalEURASIP Journal on Wireless Communications and Networking
Volume2011
DOIs
Publication statusPublished - 25 Sep 2011
Externally publishedYes

Cite this

@article{afd215ba9b1b461ba3a4d5d696a1b930,
title = "Hadamard upper bound on optimum joint decoding capacity of Wyner Gaussian cellular MAC",
abstract = "This article presents an original analytical expression for an upper bound on the optimum joint decoding capacity of Wyner circular Gaussian cellular multiple access channel (C-GCMAC) for uniformly distributed mobile terminals (MTs). This upper bound is referred to as Hadamard upper bound (HUB) and is a novel application of the Hadamard inequality established by exploiting the Hadamard operation between the channel fading matrix G and the channel path gain matrix Ω. This article demonstrates that the actual capacity converges to the theoretical upper bound under the constraints like low signal-to-noise ratios and limiting channel path gain among the MTs and the respective base station of interest. In order to determine the usefulness of the HUB, the behavior of the theoretical upper bound is critically observed specially when the inter-cell and the intra-cell time sharing schemes are employed. In this context, we derive an analytical form of HUB by employing an approximation approach based on the estimation of probability density function of trace of Hadamard product of two matrices, i.e., G and Ω. A closed form of expression has been derived to capture the effect of the MT distribution on the optimum joint decoding capacity of C-GCMAC. This article demonstrates that the analytical HUB based on the proposed approximation approach converges to the theoretical upper bound results in the medium to high signal to noise ratio regime and shows a reasonably tighter bound on optimum joint decoding capacity of Wyner GCMAC.",
author = "Shakir, {Muhammad Zeeshan} and Durrani, {Tariq S.} and Mohamed-Slim Alouini",
year = "2011",
month = "9",
day = "25",
doi = "10.1186/1687-1499-2011-110",
language = "English",
volume = "2011",
pages = "1--13",
journal = "EURASIP Journal on Wireless Communications and Networking",
issn = "1687-1472",
publisher = "Springer Publishing Company",

}

Hadamard upper bound on optimum joint decoding capacity of Wyner Gaussian cellular MAC. / Shakir, Muhammad Zeeshan; Durrani, Tariq S.; Alouini, Mohamed-Slim.

In: EURASIP Journal on Wireless Communications and Networking, Vol. 2011, 110, 25.09.2011, p. 1-13.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Hadamard upper bound on optimum joint decoding capacity of Wyner Gaussian cellular MAC

AU - Shakir, Muhammad Zeeshan

AU - Durrani, Tariq S.

AU - Alouini, Mohamed-Slim

PY - 2011/9/25

Y1 - 2011/9/25

N2 - This article presents an original analytical expression for an upper bound on the optimum joint decoding capacity of Wyner circular Gaussian cellular multiple access channel (C-GCMAC) for uniformly distributed mobile terminals (MTs). This upper bound is referred to as Hadamard upper bound (HUB) and is a novel application of the Hadamard inequality established by exploiting the Hadamard operation between the channel fading matrix G and the channel path gain matrix Ω. This article demonstrates that the actual capacity converges to the theoretical upper bound under the constraints like low signal-to-noise ratios and limiting channel path gain among the MTs and the respective base station of interest. In order to determine the usefulness of the HUB, the behavior of the theoretical upper bound is critically observed specially when the inter-cell and the intra-cell time sharing schemes are employed. In this context, we derive an analytical form of HUB by employing an approximation approach based on the estimation of probability density function of trace of Hadamard product of two matrices, i.e., G and Ω. A closed form of expression has been derived to capture the effect of the MT distribution on the optimum joint decoding capacity of C-GCMAC. This article demonstrates that the analytical HUB based on the proposed approximation approach converges to the theoretical upper bound results in the medium to high signal to noise ratio regime and shows a reasonably tighter bound on optimum joint decoding capacity of Wyner GCMAC.

AB - This article presents an original analytical expression for an upper bound on the optimum joint decoding capacity of Wyner circular Gaussian cellular multiple access channel (C-GCMAC) for uniformly distributed mobile terminals (MTs). This upper bound is referred to as Hadamard upper bound (HUB) and is a novel application of the Hadamard inequality established by exploiting the Hadamard operation between the channel fading matrix G and the channel path gain matrix Ω. This article demonstrates that the actual capacity converges to the theoretical upper bound under the constraints like low signal-to-noise ratios and limiting channel path gain among the MTs and the respective base station of interest. In order to determine the usefulness of the HUB, the behavior of the theoretical upper bound is critically observed specially when the inter-cell and the intra-cell time sharing schemes are employed. In this context, we derive an analytical form of HUB by employing an approximation approach based on the estimation of probability density function of trace of Hadamard product of two matrices, i.e., G and Ω. A closed form of expression has been derived to capture the effect of the MT distribution on the optimum joint decoding capacity of C-GCMAC. This article demonstrates that the analytical HUB based on the proposed approximation approach converges to the theoretical upper bound results in the medium to high signal to noise ratio regime and shows a reasonably tighter bound on optimum joint decoding capacity of Wyner GCMAC.

U2 - 10.1186/1687-1499-2011-110

DO - 10.1186/1687-1499-2011-110

M3 - Article

VL - 2011

SP - 1

EP - 13

JO - EURASIP Journal on Wireless Communications and Networking

JF - EURASIP Journal on Wireless Communications and Networking

SN - 1687-1472

M1 - 110

ER -