Graphene–graphite polyurethane composite based high-energy density flexible supercapacitors

Libu Manjakkal, William Taube Navaraj, Carlos García Núñez, Ravinder Dahiya

Research output: Contribution to journalArticlepeer-review

25 Citations (Scopus)
162 Downloads (Pure)

Abstract

Energy autonomy is critical for wearable and portable systems and to this end storage devices with high‐energy density are needed. This work presents high‐energy density flexible supercapacitors (SCs), showing three times the energy density than similar type of SCs reported in the literature. The graphene–graphite polyurethane (GPU) composite based SCs have maximum energy and power densities of 10.22 µWh cm−2 and 11.15 mW cm−2, respectively, at a current density of 10 mA cm−2 and operating voltage of 2.25 V (considering the IR drop). The significant gain in the performance of SCs is due to excellent electroactive surface per unit area (surface roughness 97.6 nm) of GPU composite and high electrical conductivity (0.318 S cm−1). The fabricated SCs show stable response for more than 15 000 charging/discharging cycles at current densities of 10 mA cm−2 and operating voltage of 2.5 V (without considering the IR drop). The developed SCs are tested as energy storage devices for wide applications, namely: a) solar‐powered energy‐packs to operate 84 light‐emitting diodes (LEDs) for more than a minute and to drive the actuators of a prosthetic limb; b) powering high‐torque motors; and c) wristband for wearable sensors.
Original languageEnglish
Article number1802251
Number of pages13
JournalAdvanced Science
Volume6
Issue number7
Early online date13 Feb 2019
DOIs
Publication statusPublished - 3 Apr 2019

Keywords

  • energy autonomy
  • flexible supercapacitors
  • graphite
  • photovoltaic cells
  • wearable systems

Fingerprint Dive into the research topics of 'Graphene–graphite polyurethane composite based high-energy density flexible supercapacitors'. Together they form a unique fingerprint.

  • Energy autonomous electronic skin

    García Núñez, C., Manjakkal, L. & Dahiya, R., 4 Jan 2019, In: NPJ Flexible Electronics. 3, 1, 24 p., 1.

    Research output: Contribution to journalReview articlepeer-review

    Open Access
    File
    63 Citations (Scopus)
    162 Downloads (Pure)
  • Energy autonomous eSkin

    Manjakkal, L., Nunez, C. G. & Dahiya, R., 9 Apr 2019.

    Research output: Contribution to conferencePaperpeer-review

  • Energy autonomous eSkin

    Manjakkal, L., García Núñez, C. & Dahiya, R., 9 Apr 2019, SPIE Defense + Commercial Sensing: 2019, Baltimore, Maryland, United States. Micro- and Nanotechnology Sensors, Systems, and Applications XI. Baltimore: Society of Photo-Optical Instrumentation Engineers, Vol. 10982. 109821K. (Proceedings of SPIE; vol. 10982).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    Open Access
    File
    141 Downloads (Pure)

Cite this