Gill morphology and acute hypoxia: responses of mitochondria-rich, pavement, and mucous cells in the Amazonian oscar (Astronotus ocellatus) and the rainbow trout (Oncorhynchus mykiss), two species with very different approaches to the osmo-respiratory compromise

Victoria Matey, Fathima I. Iftikar, Gudrun De Boeck, Graham R. Scott, Katherine A. Sloman, Vera M. F. Almeida-Val, Adalberto L. Val, Chris M. Wood

Research output: Contribution to journalArticlepeer-review

53 Citations (Scopus)

Abstract

The hypoxia-intolerant rainbow trout (Oncorhynchus mykiss (Walbaum, 1792)) exhibits increased branchial ion permeability and Na+ influx during acute exposure to moderate hypoxia (Po2 = 80 torr; 1 torr = 133.3224 Pa), manifesting the usual trade-off between gas exchange and electrolyte conservation. In contrast, the hypoxia-tolerant oscar (Astronotus ocellatus (Agassiz, 1831)) is unusual in exhibiting decreased branchial ion permeability to ions and Na+ influx during acute exposure to severe hypoxia (Po2 = 10–20 torr). These different physiological approaches to the osmo-respiratory compromise correlate with rapid, oppositely directed changes in gill morphology. In oscar, pavement cells (PVCs) expanded, partially covering neighboring mitochondria-rich cells (MRCs), which were recessed and reduced in size. Those remaining open were transformed from “shallow-basin” to “deep-hole” forms with smaller openings, deeper apical crypts, and smaller numbers of subapical microvesicles, changes that were largely reversed during normoxic recovery. In contrast, moderate hypoxia caused outward bulging of MRCs in rainbow trout with increases in size, surface exposure, and number of subapical microvesicles, accompanied by PVC retraction. These changes were partially reversed during normoxic recovery. In both rainbow trout and oscar, hypoxia caused discharge of mucus from enlarged mucous cells (MCs). Rapid, divergent morphological changes play an important role in explaining two very different physiological approaches to the osmo-respiratory compromise.
Original languageEnglish
Pages (from-to)307-324
JournalCanadian Journal of Zoology
Volume89
Issue number4
DOIs
Publication statusPublished - Apr 2011

Fingerprint

Dive into the research topics of 'Gill morphology and acute hypoxia: responses of mitochondria-rich, pavement, and mucous cells in the Amazonian oscar (Astronotus ocellatus) and the rainbow trout (Oncorhynchus mykiss), two species with very different approaches to the osmo-respiratory compromise'. Together they form a unique fingerprint.

Cite this