Gelatin nanofibers: recent insights in synthesis, bio-medical applications and limitations

Hesham R. El-Seedi*, Noha S. Said, Nermeen Yosri, Hamada B. Hawash, Dina M. El-Sherif, Mohamed Abouzid, Mohamed M. Abdel-Daim, Mohammed Yaseen, Hany Omar, Qiyang Shou, Nour F. Attia, Xiaobo Zou, Zhiming Guo, Shaden A.M. Khalifa

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

12 Citations (Scopus)
13 Downloads (Pure)

Abstract

The use of gelatin and gelatin-blend polymers as environmentally safe polymers to synthesis electrospun nanofibers, has caused a revolution in the biomedical field. The development of efficient nanofibers has played a significant role in drug delivery, and for use in advanced scaffolds in regenerative medicine. Gelatin is an exceptional biopolymer, which is highly versatile, despite variations in the processing technology. The electrospinning process is an efficient technique for the manufacture of gelatin electrospun nanofibers (GNFs), as it is simple, efficient, and cost-effective. GNFs have higher porosity with large surface area and biocompatibility, despite that there are some drawbacks. These drawbacks include rapid degradation, poor mechanical strength, and complete dissolution, which limits the use of gelatin electrospun nanofibers in this form for biomedicine. Thus, these fibers need to be cross-linked, in order to control its solubility. This modification caused an improvement in the biological properties of GNFs, which made them suitable candidates for various biomedical applications, such as wound healing, drug delivery, bone regeneration, tubular scaffolding, skin, nerve, kidney, and cardiac tissue engineering. In this review an outline of electrospinning is shown with critical summary of literature evaluated with respect to the various applications of nanofibers-derived gelatin.

Original languageEnglish
Article numbere16228
Number of pages21
JournalHeliyon
Volume9
Issue number5
Early online date13 May 2023
DOIs
Publication statusPublished - 31 May 2023

Keywords

  • electrospinning
  • gelatin
  • medical application
  • nanofibers
  • tissue engineering

Fingerprint

Dive into the research topics of 'Gelatin nanofibers: recent insights in synthesis, bio-medical applications and limitations'. Together they form a unique fingerprint.

Cite this