Abstract
A set of B(E2) values for the low-lying excited states in the radioactive isotope
109Sn were deduced from a Coulomb excitation experiment. The 2.87-MeV/u
radioactive beam was produced at the REX-ISOLDE facility at CERN and was incident on a secondary 58Ni target. The B(E2) values were determined using the known 2+→0+ reduced transition probability in 58 Ni as normalization with the semiclassical Coulomb excitation code gosia2. The transition probabilities are compared to shell-model calculations based on a realistic nucleon-nucleon interaction and the predictions of a simple core-excitation model. This measurement represents the first determination of multiple B(E2)
values in a light Sn nucleus using the Coulomb excitation technique with low-energy radioactive beams. The results provide constraints for the single-neutron states relative to 100Sn and also indicate the importance of both single-neutron and collective excitations in the light Sn isotopes.
109Sn were deduced from a Coulomb excitation experiment. The 2.87-MeV/u
radioactive beam was produced at the REX-ISOLDE facility at CERN and was incident on a secondary 58Ni target. The B(E2) values were determined using the known 2+→0+ reduced transition probability in 58 Ni as normalization with the semiclassical Coulomb excitation code gosia2. The transition probabilities are compared to shell-model calculations based on a realistic nucleon-nucleon interaction and the predictions of a simple core-excitation model. This measurement represents the first determination of multiple B(E2)
values in a light Sn nucleus using the Coulomb excitation technique with low-energy radioactive beams. The results provide constraints for the single-neutron states relative to 100Sn and also indicate the importance of both single-neutron and collective excitations in the light Sn isotopes.
Original language | English |
---|---|
Article number | 031302 |
Journal | Physical Review C |
Volume | 86 |
Issue number | 3 |
DOIs | |
Publication status | Published - Sept 2012 |
Externally published | Yes |