Evolution of octupole deformation in radium nuclei from Coulomb excitation of radioactive 222Ra and 228Ra  beams

P.A. Butler, L.P. Gaffney, P. Spagnoletti, K. Abrahams, Mike Bowry, J. Cederkäll, G. de Angelis, H. De Witte, P.E. Garrett, A. Goldkuhle, C. Henrich, A. Illana, K. Johnston, D.T. Joss, J.M. Keatings, N.A. Kelly, M. Komorowska, J. Konki, T. Kröll, M. LozanoB.S. Nara Singh, D. O'Donnell, J. Ojala, R.D. Page, L.G. Pedersen, C. Raison, P. Reiter, J.A. Rodriguez, D. Rosiak, S. Rothe, M. Scheck, M. Seidlitz, T.M. Shneidman, B. Siebeck, J. Sinclair, J.F. Smith, M. Stryjczyk, P. Van Duppen, S. Vinals, V. Virtanen, N. Warr, K. Wrzosek-Lipska, M. Zielińska

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)
32 Downloads (Pure)


There is sparse direct experimental evidence that atomic nuclei can exhibit stable “pear” shapes arising from strong octupole correlations. In order to investigate the nature of octupole collectivity in radium isotopes, electric octupole (E3) matrix elements have been determined for transitions in 222,228Ra nuclei using the method of sub-barrier, multistep Coulomb excitation. Beams of the radioactive radium isotopes were provided by the HIE-ISOLDE facility at CERN. The observed pattern of E3 matrix elements for different nuclear transitions is explained by describing 222Ra as pear shaped with stable octupole deformation, while 228Ra behaves like an octupole vibrator.
Original languageEnglish
Article number042503
Number of pages6
JournalPhysical Review Letters
Issue number4
Publication statusPublished - 31 Jan 2020


  • nucl-ex
  • hep-ph
  • nucl-th
  • physics.atom-ph


Dive into the research topics of 'Evolution of octupole deformation in radium nuclei from Coulomb excitation of radioactive <sup>222</sup>Ra and <sup>228</sup>Ra  beams'. Together they form a unique fingerprint.

Cite this