Abstract
Objective: We developed two neural network models to estimate the three-dimensional ground reaction force (GRF) and center of pressure (COP) based on marker trajectories obtained from a markerless motion capture system.
Methods: Gait data were collected using two cameras and three force plates. Each gait dataset contained kinematic data and kinetic data from the stance phase. A multi-layer perceptron (MLP) and convolutional neural network (CNN) were constructed to estimate each component of GRF and COP based on the three-dimensional trajectories of the markers. A total of 100 samples were randomly selected as the test set, and the estimation performance was evaluated using the correlation coefficient (r) and relative root mean square error (rRMSE).
Results: The r-values for MLP in each GRF component ranged from 0.918 to 0.989, with rRMSEs between 5.06% and 12.08%. The r-values for CNN in each GRF component ranged from 0.956 to 0.988, with rRMSEs between 6.03–9.44%. For the COP estimation, the r-values for MLP ranged from 0.727 to 0.982, with rRMSEs between 6.43% and 27.64%, while the r-values for CNN ranged from 0.896 to 0.977, with rRMSEs between 6.41% and 7.90%.
Conclusions: It is possible to estimate GRF and COP from markerless motion capture data. This approach provides an alternative method for measuring kinetic parameters without force plates during gait analysis.
Methods: Gait data were collected using two cameras and three force plates. Each gait dataset contained kinematic data and kinetic data from the stance phase. A multi-layer perceptron (MLP) and convolutional neural network (CNN) were constructed to estimate each component of GRF and COP based on the three-dimensional trajectories of the markers. A total of 100 samples were randomly selected as the test set, and the estimation performance was evaluated using the correlation coefficient (r) and relative root mean square error (rRMSE).
Results: The r-values for MLP in each GRF component ranged from 0.918 to 0.989, with rRMSEs between 5.06% and 12.08%. The r-values for CNN in each GRF component ranged from 0.956 to 0.988, with rRMSEs between 6.03–9.44%. For the COP estimation, the r-values for MLP ranged from 0.727 to 0.982, with rRMSEs between 6.43% and 27.64%, while the r-values for CNN ranged from 0.896 to 0.977, with rRMSEs between 6.41% and 7.90%.
Conclusions: It is possible to estimate GRF and COP from markerless motion capture data. This approach provides an alternative method for measuring kinetic parameters without force plates during gait analysis.
Original language | English |
---|---|
Article number | 588 |
Number of pages | 12 |
Journal | Bioengineering |
Volume | 12 |
Issue number | 6 |
DOIs | |
Publication status | Published - 29 May 2025 |
Keywords
- ground reaction force
- center of pressure
- neural network
- gait analysis
- markerless motion capture