Enhanced erosion performance of cold spray co-deposited AISI316 MMCs modified by friction stir processing

Tom Peat, Alexander Galloway, Athanasios Toumpis, Russell Steel, Wenzhong Zhu, Naveed Iqbal

Research output: Contribution to journalArticle

28 Citations (Scopus)
123 Downloads (Pure)

Abstract

The present study reports on the erosion properties of a novel surface engineering process combining cold spray and friction stir processing. Tungsten carbide (WC-CoCr) and aluminium oxide (Al2O3) powders were cold spray co-deposited with AISI316 using a twin powder feed system. The deposited coatings were subsequently friction stir processed to refine and redistribute the reinforcing particles and remove the coating-to-substrate interface layer, thus generating a new metal matrix composite surface. Microstructural analysis of the SprayStirred (cold sprayed then friction stirred) specimens revealed significant particle refinement and improved particle distribution over the as-deposited coatings. The erosion performance of these SprayStirred surfaces was evaluated using a flowing slurry and demonstrated an 80% decrease in volume loss over the as-received AISI316 at 30° angle of attack. For SprayStirred WC-CoCr, microhardness measurements indicated an increase of approx. 530% over the unaltered AISI316 and 100% over the cold sprayed coating. These findings highlight the considerable increase in erosion performance of the SprayStirred specimens, and thus demonstrate the benefits of this innovative surface engineering process. This outcome is attributed to dispersion strengthening, imparted by the refined tungsten carbides. Furthermore, the SprayStirred WC-CoCr coating exhibited an 85% reduction in volume loss over an HVOF sprayed WC-CoCr coating.
Original languageEnglish
Pages (from-to)22-35
JournalMaterials & Design
Volume120
Early online date3 Feb 2017
DOIs
Publication statusPublished - 15 Apr 2017

Fingerprint Dive into the research topics of 'Enhanced erosion performance of cold spray co-deposited AISI316 MMCs modified by friction stir processing'. Together they form a unique fingerprint.

  • Cite this