TY - JOUR
T1 - Development of a novel off-grid drinking water production system integrating electrochemically activated solutions and ultrafiltration membranes
AU - Clayton, Gillian E.
AU - Thorn, Robin M.S.
AU - Reynolds, Darren M.
PY - 2019/8/31
Y1 - 2019/8/31
N2 - Approximately 800 million people live without clean drinking water. Diarrhoea is responsible for between 1.7 and 2 million deaths each year (primarily children) which are the result of poor drinking water quality and sanitation. The main aim of this study was to demonstrate the production of drinking water from a raw water source using an off-grid drinking water production system. The off-grid drinking water production system (DWPS) developed at UWE Bristol, combines an ultra-filtration (UF) system with in situ generation of electrochemically activated solutions (ECAS). ECAS has two functional roles within the system; to manage biofilms within the UF system and as a disinfectant. Integrated in-situ probes (pH, oxidation reduction potential, chlorine, conductivity and dissolved oxygen) coupled with a water quality sensing network (pH, water temperature, conductivity and dissolved oxygen) enabled real time monitoring of; the operational efficiency of the DWPS, and the physicochemical parameters of both the raw water source and the produced drinking water. Spot samples of both raw and treated water were sent for independent chemical and microbial analysis at an accredited laboratory which demonstrated that the DWPS produced biologically safe potable drinking water according to the Drinking Water Inspectorate (DWI) standards. Samples from the raw water source were shown to be consistently unsuitable for human consumption, failing several of the DWI standards for potable water supply, including coliform bacteria. This study demonstrated that the novel off-grid DWPS was capable of producing DWI standard drinking water from a heavily biologically contaminated water source.
AB - Approximately 800 million people live without clean drinking water. Diarrhoea is responsible for between 1.7 and 2 million deaths each year (primarily children) which are the result of poor drinking water quality and sanitation. The main aim of this study was to demonstrate the production of drinking water from a raw water source using an off-grid drinking water production system. The off-grid drinking water production system (DWPS) developed at UWE Bristol, combines an ultra-filtration (UF) system with in situ generation of electrochemically activated solutions (ECAS). ECAS has two functional roles within the system; to manage biofilms within the UF system and as a disinfectant. Integrated in-situ probes (pH, oxidation reduction potential, chlorine, conductivity and dissolved oxygen) coupled with a water quality sensing network (pH, water temperature, conductivity and dissolved oxygen) enabled real time monitoring of; the operational efficiency of the DWPS, and the physicochemical parameters of both the raw water source and the produced drinking water. Spot samples of both raw and treated water were sent for independent chemical and microbial analysis at an accredited laboratory which demonstrated that the DWPS produced biologically safe potable drinking water according to the Drinking Water Inspectorate (DWI) standards. Samples from the raw water source were shown to be consistently unsuitable for human consumption, failing several of the DWI standards for potable water supply, including coliform bacteria. This study demonstrated that the novel off-grid DWPS was capable of producing DWI standard drinking water from a heavily biologically contaminated water source.
KW - off-grid
KW - drinking water production
KW - electrochemically activated solutions
KW - ultrafiltration
UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-85028597591&partnerID=MN8TOARS
U2 - 10.1016/j.jwpe.2017.08.018
DO - 10.1016/j.jwpe.2017.08.018
M3 - Article
SN - 2214-7144
VL - 30
JO - Journal of Water Process Engineering
JF - Journal of Water Process Engineering
M1 - 100480
ER -