Detailed photophysical properties of a functionalized ruthenium (II) polypyridyl complex: through-space solvent effects

Andrew C. Benniston*, Philip R. Mackie, Louis J. Farrugia, Graeme Smith, Simon J. Teat, Andrew J. McLean

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    8 Citations (Scopus)

    Abstract

    The synthesis and detailed photophysical properties of a bis(N-methylene-4-pyridinium-4′-pyridine)-functionalized ruthenium(II) polypyridyl complex in solvents of varying polarity and Gutmann's donor number (DN) are reported, along with its single-crystal X-ray structure. The emission spectrum of the complex in varying solvents was also simulated and parameters, including the Huang–Rhys (Sm) electron-vibrational coupling constant, obtained. Reasonable correlations of the optical properties with the solvent polarity factor (Δf) and DN were observed. A difference in dipole moment between the ground and excited states of ca. 10 D was calculated, and a simplified potential-energy surface model proposed to explain the results. Excited state lifetimes in acetonitrile were determined over a modest temperature range of 60 K. The linear Arrhenius plot of ln(kobs) [italic v (to differentiate from Times ital nu)]s. 1/T gave an activation energy of 5.6(±0.6) kJ mol−1, which is low when compared to the literature value of 45.5 kJ mol−1 for [Ru(bipy)3]2+.
    Original languageEnglish
    Pages (from-to)458-464
    Number of pages7
    JournalNew Journal of Chemistry
    Volume25
    Issue number3
    DOIs
    Publication statusPublished - 15 Feb 2001

    Fingerprint

    Dive into the research topics of 'Detailed photophysical properties of a functionalized ruthenium (II) polypyridyl complex: through-space solvent effects'. Together they form a unique fingerprint.

    Cite this