TY - JOUR
T1 - Design, synthesis, and antitumor activity of novel dispiro[oxindole-cyclohexanone]-pyrrolidines
AU - Gouda, Magy
AU - Bawzeer, Majed
AU - Hegazy, Lamees
AU - Azab, Mohamed
AU - Elagawany, Mohamed
AU - Rateb, Mostafa
AU - Yaseen, Mohammed
AU - Elgendy, Bahaa
PY - 2022/1/31
Y1 - 2022/1/31
N2 - Background: Spirooxindoles are privileged scaffolds in medicinal chemistry, which were identified through Wang’s pioneering work as inhibitors of MDM2-p53 interactions. Objective: To design and synthesize 2,6-diarylidenecyclohexanones and dispiro[oxindole-cyclohexanone]-pyrrolidines having potential antitumor effect. Methods: Dispiro[oxindole-cyclohexanone]-pyrrolidines 6a-h were synthesized in a regioselective manner via 1,3-dipolar cycloaddition reaction of 2,6-diarylidenecyclohexanones 3a-h, isatin, and sarcocine. Compounds 6a-h were alkylated to give (7-10)a,b. All compounds were evaluated in vitro for their antitumor activity and cytotoxic selectivity against breast cancer cell lines (MCF-7 and MDA-MB-231), breast fibrosis cell line (MCF10a), and placental cancer cell line (JEG-3). Molecular modeling inside the MDM2 binding site was per-formed using AutoDock4.2. Results: Synthesized compounds showed antitumor activity comparable to tamoxifen and compounds 3a,b,f,g and 9a,b showed selective cytotoxicity against tumor cells but reduced toxicity toward MCF-10a cells. Molecular modelling shows that both classes of synthesized compounds are predicted to fit the deep hydrophobic cleft on the surface of MDM2 and mimic the interactions between p53 and MDM2. Conclusion: The synthesized compounds have antitumor activity against MCF-7, MDA-MB-231, and JEG-3. Few compounds showed a selective cytotoxic effect and may have the potential to inhibit MDM2 and stimulate p53. In the future, studies regarding the optimization of medicinal chemistry as well as mechanistic studies will be conducted to enhance the inhibition effect of identified compounds and elucidate their mechanism of action.
AB - Background: Spirooxindoles are privileged scaffolds in medicinal chemistry, which were identified through Wang’s pioneering work as inhibitors of MDM2-p53 interactions. Objective: To design and synthesize 2,6-diarylidenecyclohexanones and dispiro[oxindole-cyclohexanone]-pyrrolidines having potential antitumor effect. Methods: Dispiro[oxindole-cyclohexanone]-pyrrolidines 6a-h were synthesized in a regioselective manner via 1,3-dipolar cycloaddition reaction of 2,6-diarylidenecyclohexanones 3a-h, isatin, and sarcocine. Compounds 6a-h were alkylated to give (7-10)a,b. All compounds were evaluated in vitro for their antitumor activity and cytotoxic selectivity against breast cancer cell lines (MCF-7 and MDA-MB-231), breast fibrosis cell line (MCF10a), and placental cancer cell line (JEG-3). Molecular modeling inside the MDM2 binding site was per-formed using AutoDock4.2. Results: Synthesized compounds showed antitumor activity comparable to tamoxifen and compounds 3a,b,f,g and 9a,b showed selective cytotoxicity against tumor cells but reduced toxicity toward MCF-10a cells. Molecular modelling shows that both classes of synthesized compounds are predicted to fit the deep hydrophobic cleft on the surface of MDM2 and mimic the interactions between p53 and MDM2. Conclusion: The synthesized compounds have antitumor activity against MCF-7, MDA-MB-231, and JEG-3. Few compounds showed a selective cytotoxic effect and may have the potential to inhibit MDM2 and stimulate p53. In the future, studies regarding the optimization of medicinal chemistry as well as mechanistic studies will be conducted to enhance the inhibition effect of identified compounds and elucidate their mechanism of action.
KW - spiro-oxindoles
KW - diarylidenecyclohexanones
KW - 1
KW - 3-dipolar cycloaddition reactions
KW - antitumor
KW - molecular modeling
KW - MDM2
KW - p53
UR - https://benthamscience.com/self-archiving-policies-main.php
U2 - 10.2174/1381612827666210625160627
DO - 10.2174/1381612827666210625160627
M3 - Article
VL - 28
SP - 198
EP - 207
JO - Current Pharmaceutical Design
JF - Current Pharmaceutical Design
IS - 3
ER -