Contact properties and surface reaction kinetics of single ZnO nanowire devices fabricated by dielectrophoresis

J.L. Pau, Carlos García Núñez, Antonio Garcia Marin, Carlos Guerrero, Pedro Rodriguez, S. Borromeo, J. Piqueras

Research output: Contribution to journalArticlepeer-review

Abstract

This work describes the development of ZnO nanowire (NW) devices for ultraviolet detection and cost-effective gas sensing. A dielectrophoresis (DEP) flow cell fabricated for the integration of NWs on different substrates is presented. The system includes the possibility to set characteristic parameters such as alternating current (AC) frequency, amplitude or flow speed in order to control NW trapping on specific sites defined by micro-gapped electrodes. The electrical characteristics of the rectifying metal/NW contact fabricated by DEP are investigated in darkness and under direct illumination of the metal-NW interface through the ZnO NW. A significant downshift of the turn-on voltage is observed in the current-voltage characteristics during the illumination with photon energies higher than the ZnO bandgap. The reduction is attributed to a barrier height lowering induced by interface charge emission. The effects of AC bias on the thermal drift of the DC average current in NW devices are also discussed. Finally, the reaction kinetics of ethanol and water vapors on the NW surface are compared through the analysis of the DC current under direct exposure to gas flows. Device responses to more complex compound mixtures such as coffee or mint are also monitored over time, showing different performance in both cases.
Original languageEnglish
Article number2044456
JournalSPIE Proceedings
Volume8987
DOIs
Publication statusPublished - 8 Mar 2014
Externally publishedYes

Fingerprint

Dive into the research topics of 'Contact properties and surface reaction kinetics of single ZnO nanowire devices fabricated by dielectrophoresis'. Together they form a unique fingerprint.

Cite this