Co-activation of vastus lateralis and biceps femoris muscles in pubertal children and adults

Eleftherios Kellis, Viswanath B. Unnithan

Research output: Contribution to journalArticle

Abstract

Determining the mechanisms of co-activation around the knee joint with respect to age and sex is important in terms of our greater understanding of strength development. The purpose of this study was to examine the effects of age, sex and muscle action on moment of force and electromyographic (EMG) activity of the agonist and antagonist muscle groups during isokinetic eccentric and concentric knee extension and flexion. The study comprised nine pubertal boys [mean age 12.6 (SD 0.5) years], nine girls [12.7 (SD 0.5) years] nine adult men [23.1 (SD 2.1) years] and nine adult women [23.7 (SD 3.1) years] who performed maximal isometric eccentric and concentric efforts of knee extensors and flexors on a dynamometer at 30° · s−1. The moment of force and surface EMG activity of vastus lateralis and biceps femoris muscles were recorded. The moment of force:agonist averaged EMG (aEMG) ratios were calculated. The antagonist aEMG values were expressed as a percentage of the aEMG activity of the same muscle, at the same angle, angular velocity and muscle action when the muscle was acting as agonist. Three-way analysis of variance (ANOVA) designs indicated no significant effects of age or sex on moment:aEMG ratios. Eccentric ratios were significantly higher than the corresponding concentric ones (P < 0.05). The results also indicated no significant effect of age and sex on the aEMG of the vastus lateralis and biceps femoris muscles when acting as antagonists. The antagonist aEMG was significantly greater during concentric agonist efforts compared with the corresponding eccentric ones (P < 0.05). These findings would suggest that the moment exerted per unit of agonist EMG and the antagonist activity are similar in children compared with adults and are not sex dependent. Future comparisons between eccentric and concentric moments of force and agonist ENG should take into consideration the antagonist effects, irrespective of age or sex.
Original languageEnglish
Pages (from-to)504-511
Number of pages8
JournalEuropean Journal of Applied Physiology and Occupational Physiology
Volume79
Issue number6
DOIs
Publication statusPublished - Apr 1999
Externally publishedYes

Fingerprint

Quadriceps Muscle
Muscles
Knee
Knee Joint
Hamstring Muscles
Analysis of Variance

Keywords

  • co-activation
  • children
  • knee
  • electromyography
  • isokinetic

Cite this

@article{a5c93096ea2741f68b632c3bdd94ca6e,
title = "Co-activation of vastus lateralis and biceps femoris muscles in pubertal children and adults",
abstract = "Determining the mechanisms of co-activation around the knee joint with respect to age and sex is important in terms of our greater understanding of strength development. The purpose of this study was to examine the effects of age, sex and muscle action on moment of force and electromyographic (EMG) activity of the agonist and antagonist muscle groups during isokinetic eccentric and concentric knee extension and flexion. The study comprised nine pubertal boys [mean age 12.6 (SD 0.5) years], nine girls [12.7 (SD 0.5) years] nine adult men [23.1 (SD 2.1) years] and nine adult women [23.7 (SD 3.1) years] who performed maximal isometric eccentric and concentric efforts of knee extensors and flexors on a dynamometer at 30° · s−1. The moment of force and surface EMG activity of vastus lateralis and biceps femoris muscles were recorded. The moment of force:agonist averaged EMG (aEMG) ratios were calculated. The antagonist aEMG values were expressed as a percentage of the aEMG activity of the same muscle, at the same angle, angular velocity and muscle action when the muscle was acting as agonist. Three-way analysis of variance (ANOVA) designs indicated no significant effects of age or sex on moment:aEMG ratios. Eccentric ratios were significantly higher than the corresponding concentric ones (P < 0.05). The results also indicated no significant effect of age and sex on the aEMG of the vastus lateralis and biceps femoris muscles when acting as antagonists. The antagonist aEMG was significantly greater during concentric agonist efforts compared with the corresponding eccentric ones (P < 0.05). These findings would suggest that the moment exerted per unit of agonist EMG and the antagonist activity are similar in children compared with adults and are not sex dependent. Future comparisons between eccentric and concentric moments of force and agonist ENG should take into consideration the antagonist effects, irrespective of age or sex.",
keywords = "co-activation, children, knee, electromyography, isokinetic",
author = "Eleftherios Kellis and Unnithan, {Viswanath B.}",
year = "1999",
month = "4",
doi = "10.1007/s004210050545",
language = "English",
volume = "79",
pages = "504--511",
journal = "European Journal of Applied Physiology and Occupational Physiology",
issn = "0301-5548",
publisher = "Springer Berlin Heidelberg",
number = "6",

}

TY - JOUR

T1 - Co-activation of vastus lateralis and biceps femoris muscles in pubertal children and adults

AU - Kellis, Eleftherios

AU - Unnithan, Viswanath B.

PY - 1999/4

Y1 - 1999/4

N2 - Determining the mechanisms of co-activation around the knee joint with respect to age and sex is important in terms of our greater understanding of strength development. The purpose of this study was to examine the effects of age, sex and muscle action on moment of force and electromyographic (EMG) activity of the agonist and antagonist muscle groups during isokinetic eccentric and concentric knee extension and flexion. The study comprised nine pubertal boys [mean age 12.6 (SD 0.5) years], nine girls [12.7 (SD 0.5) years] nine adult men [23.1 (SD 2.1) years] and nine adult women [23.7 (SD 3.1) years] who performed maximal isometric eccentric and concentric efforts of knee extensors and flexors on a dynamometer at 30° · s−1. The moment of force and surface EMG activity of vastus lateralis and biceps femoris muscles were recorded. The moment of force:agonist averaged EMG (aEMG) ratios were calculated. The antagonist aEMG values were expressed as a percentage of the aEMG activity of the same muscle, at the same angle, angular velocity and muscle action when the muscle was acting as agonist. Three-way analysis of variance (ANOVA) designs indicated no significant effects of age or sex on moment:aEMG ratios. Eccentric ratios were significantly higher than the corresponding concentric ones (P < 0.05). The results also indicated no significant effect of age and sex on the aEMG of the vastus lateralis and biceps femoris muscles when acting as antagonists. The antagonist aEMG was significantly greater during concentric agonist efforts compared with the corresponding eccentric ones (P < 0.05). These findings would suggest that the moment exerted per unit of agonist EMG and the antagonist activity are similar in children compared with adults and are not sex dependent. Future comparisons between eccentric and concentric moments of force and agonist ENG should take into consideration the antagonist effects, irrespective of age or sex.

AB - Determining the mechanisms of co-activation around the knee joint with respect to age and sex is important in terms of our greater understanding of strength development. The purpose of this study was to examine the effects of age, sex and muscle action on moment of force and electromyographic (EMG) activity of the agonist and antagonist muscle groups during isokinetic eccentric and concentric knee extension and flexion. The study comprised nine pubertal boys [mean age 12.6 (SD 0.5) years], nine girls [12.7 (SD 0.5) years] nine adult men [23.1 (SD 2.1) years] and nine adult women [23.7 (SD 3.1) years] who performed maximal isometric eccentric and concentric efforts of knee extensors and flexors on a dynamometer at 30° · s−1. The moment of force and surface EMG activity of vastus lateralis and biceps femoris muscles were recorded. The moment of force:agonist averaged EMG (aEMG) ratios were calculated. The antagonist aEMG values were expressed as a percentage of the aEMG activity of the same muscle, at the same angle, angular velocity and muscle action when the muscle was acting as agonist. Three-way analysis of variance (ANOVA) designs indicated no significant effects of age or sex on moment:aEMG ratios. Eccentric ratios were significantly higher than the corresponding concentric ones (P < 0.05). The results also indicated no significant effect of age and sex on the aEMG of the vastus lateralis and biceps femoris muscles when acting as antagonists. The antagonist aEMG was significantly greater during concentric agonist efforts compared with the corresponding eccentric ones (P < 0.05). These findings would suggest that the moment exerted per unit of agonist EMG and the antagonist activity are similar in children compared with adults and are not sex dependent. Future comparisons between eccentric and concentric moments of force and agonist ENG should take into consideration the antagonist effects, irrespective of age or sex.

KW - co-activation

KW - children

KW - knee

KW - electromyography

KW - isokinetic

U2 - 10.1007/s004210050545

DO - 10.1007/s004210050545

M3 - Article

VL - 79

SP - 504

EP - 511

JO - European Journal of Applied Physiology and Occupational Physiology

JF - European Journal of Applied Physiology and Occupational Physiology

SN - 0301-5548

IS - 6

ER -