Characteristics and controlling factors of pore structure of the Permian shale in southern Anhui province, East China

Taotao Cao, Mo Deng, Zhiguang Song, Houyong Luo, Andrew S. Hursthouse

Research output: Contribution to journalArticle

Abstract

The Permian shale reservoir in southern Anhui province, East China is regarded as a promising target for shale gas exploration. In order to investigate the characteristics of shale pore structures and their controlling factors, total organic carbon (TOC), Rock-eval, organic petrology, X-ray diffraction (XRD), scanning electron microscopy (SEM), field emission scanning electron microscopy (FE-SEM), nitrogen gas adsorption (N2GA), mercury intrusion porosimetry (MIP) and helium pycnometry were conducted on the Permian shales collected from two shale gas parameter wells. The results indicate that the BET surface areas determined by N2GA method vary between 1.05 and 49.25 m2/g. The porosities derived from MIP and helium pycnometry tests are in the range of 0.68%-8.9% and 1.15%-9.79%, respectively. FE-SEM reveals that organic matter (OM) pores and cracks are well developed in the Permian shales, though some OM grains contain few pores, which might be related to the maceral composition. At a high maturity stage, vitrinite do not develop secondary OM pores, and sapropelinite generally develop abundant OM pores. However, solid bitumen occupies interparticle space between minerals grains, and generally contains a small amount of pores documented in studied samples. The TOC contents have a positive relationship with the BET surface areas, suggesting OM is a primary factor in micropore and fine mesopore (<10 nm) development. TOC content has a positive relationship with porosity for samples with TOC<6.16%, but samples with TOC>6.16% usually have a low porosity probably due to compaction and/or different organic fractions. Residual bitumen (S1) is weakly and negatively correlated with Hg-porosity, due to residual bitumen filling in OM and mineral pores and reducing the total porosity. In addition, BET surface area decreases with increasing clay mineral content and Hg-porosity decreases with increasing quartz content, illustrating that clay mineral is unfavorable to the development of micropores and fine mesopores and high content of quartz may reduce macropore space. Finally, the shales of the Gufeng and Dalong Formations display a higher TOC content and a better physical property than the Longtan Formation shales and appear to be superior prospective shale gas exploration potential.
Original languageEnglish
Pages (from-to)228-245
Number of pages18
JournalJournal of Natural Gas Science & Engineering
Volume60
Early online date31 Oct 2018
DOIs
Publication statusPublished - 31 Dec 2018

Fingerprint

asphalt
Shale
Pore structure
Biological materials
shale
Permian
organic matter
Porosity
porosity
bitumen
Organic carbon
total organic carbon
Helium
Quartz
surface area
scanning electron microscopy
Clay minerals
Mercury
Field emission
helium

Keywords

  • pore characteristics
  • N2GA
  • MIP
  • FE-SEM
  • Permian shale
  • southern Anhui province

Cite this

@article{bc0f1f0819614737b64b5865a7205fd6,
title = "Characteristics and controlling factors of pore structure of the Permian shale in southern Anhui province, East China",
abstract = "The Permian shale reservoir in southern Anhui province, East China is regarded as a promising target for shale gas exploration. In order to investigate the characteristics of shale pore structures and their controlling factors, total organic carbon (TOC), Rock-eval, organic petrology, X-ray diffraction (XRD), scanning electron microscopy (SEM), field emission scanning electron microscopy (FE-SEM), nitrogen gas adsorption (N2GA), mercury intrusion porosimetry (MIP) and helium pycnometry were conducted on the Permian shales collected from two shale gas parameter wells. The results indicate that the BET surface areas determined by N2GA method vary between 1.05 and 49.25 m2/g. The porosities derived from MIP and helium pycnometry tests are in the range of 0.68{\%}-8.9{\%} and 1.15{\%}-9.79{\%}, respectively. FE-SEM reveals that organic matter (OM) pores and cracks are well developed in the Permian shales, though some OM grains contain few pores, which might be related to the maceral composition. At a high maturity stage, vitrinite do not develop secondary OM pores, and sapropelinite generally develop abundant OM pores. However, solid bitumen occupies interparticle space between minerals grains, and generally contains a small amount of pores documented in studied samples. The TOC contents have a positive relationship with the BET surface areas, suggesting OM is a primary factor in micropore and fine mesopore (<10 nm) development. TOC content has a positive relationship with porosity for samples with TOC<6.16{\%}, but samples with TOC>6.16{\%} usually have a low porosity probably due to compaction and/or different organic fractions. Residual bitumen (S1) is weakly and negatively correlated with Hg-porosity, due to residual bitumen filling in OM and mineral pores and reducing the total porosity. In addition, BET surface area decreases with increasing clay mineral content and Hg-porosity decreases with increasing quartz content, illustrating that clay mineral is unfavorable to the development of micropores and fine mesopores and high content of quartz may reduce macropore space. Finally, the shales of the Gufeng and Dalong Formations display a higher TOC content and a better physical property than the Longtan Formation shales and appear to be superior prospective shale gas exploration potential.",
keywords = "pore characteristics, N2GA, MIP, FE-SEM, Permian shale, southern Anhui province",
author = "Taotao Cao and Mo Deng and Zhiguang Song and Houyong Luo and Hursthouse, {Andrew S.}",
year = "2018",
month = "12",
day = "31",
doi = "10.1016/j.jngse.2018.10.018",
language = "English",
volume = "60",
pages = "228--245",
journal = "Journal of Natural Gas Science & Engineering",
issn = "1875-5100",
publisher = "Elsevier B.V.",

}

Characteristics and controlling factors of pore structure of the Permian shale in southern Anhui province, East China. / Cao, Taotao; Deng, Mo; Song, Zhiguang; Luo, Houyong; Hursthouse, Andrew S.

In: Journal of Natural Gas Science & Engineering, Vol. 60, 31.12.2018, p. 228-245.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Characteristics and controlling factors of pore structure of the Permian shale in southern Anhui province, East China

AU - Cao, Taotao

AU - Deng, Mo

AU - Song, Zhiguang

AU - Luo, Houyong

AU - Hursthouse, Andrew S.

PY - 2018/12/31

Y1 - 2018/12/31

N2 - The Permian shale reservoir in southern Anhui province, East China is regarded as a promising target for shale gas exploration. In order to investigate the characteristics of shale pore structures and their controlling factors, total organic carbon (TOC), Rock-eval, organic petrology, X-ray diffraction (XRD), scanning electron microscopy (SEM), field emission scanning electron microscopy (FE-SEM), nitrogen gas adsorption (N2GA), mercury intrusion porosimetry (MIP) and helium pycnometry were conducted on the Permian shales collected from two shale gas parameter wells. The results indicate that the BET surface areas determined by N2GA method vary between 1.05 and 49.25 m2/g. The porosities derived from MIP and helium pycnometry tests are in the range of 0.68%-8.9% and 1.15%-9.79%, respectively. FE-SEM reveals that organic matter (OM) pores and cracks are well developed in the Permian shales, though some OM grains contain few pores, which might be related to the maceral composition. At a high maturity stage, vitrinite do not develop secondary OM pores, and sapropelinite generally develop abundant OM pores. However, solid bitumen occupies interparticle space between minerals grains, and generally contains a small amount of pores documented in studied samples. The TOC contents have a positive relationship with the BET surface areas, suggesting OM is a primary factor in micropore and fine mesopore (<10 nm) development. TOC content has a positive relationship with porosity for samples with TOC<6.16%, but samples with TOC>6.16% usually have a low porosity probably due to compaction and/or different organic fractions. Residual bitumen (S1) is weakly and negatively correlated with Hg-porosity, due to residual bitumen filling in OM and mineral pores and reducing the total porosity. In addition, BET surface area decreases with increasing clay mineral content and Hg-porosity decreases with increasing quartz content, illustrating that clay mineral is unfavorable to the development of micropores and fine mesopores and high content of quartz may reduce macropore space. Finally, the shales of the Gufeng and Dalong Formations display a higher TOC content and a better physical property than the Longtan Formation shales and appear to be superior prospective shale gas exploration potential.

AB - The Permian shale reservoir in southern Anhui province, East China is regarded as a promising target for shale gas exploration. In order to investigate the characteristics of shale pore structures and their controlling factors, total organic carbon (TOC), Rock-eval, organic petrology, X-ray diffraction (XRD), scanning electron microscopy (SEM), field emission scanning electron microscopy (FE-SEM), nitrogen gas adsorption (N2GA), mercury intrusion porosimetry (MIP) and helium pycnometry were conducted on the Permian shales collected from two shale gas parameter wells. The results indicate that the BET surface areas determined by N2GA method vary between 1.05 and 49.25 m2/g. The porosities derived from MIP and helium pycnometry tests are in the range of 0.68%-8.9% and 1.15%-9.79%, respectively. FE-SEM reveals that organic matter (OM) pores and cracks are well developed in the Permian shales, though some OM grains contain few pores, which might be related to the maceral composition. At a high maturity stage, vitrinite do not develop secondary OM pores, and sapropelinite generally develop abundant OM pores. However, solid bitumen occupies interparticle space between minerals grains, and generally contains a small amount of pores documented in studied samples. The TOC contents have a positive relationship with the BET surface areas, suggesting OM is a primary factor in micropore and fine mesopore (<10 nm) development. TOC content has a positive relationship with porosity for samples with TOC<6.16%, but samples with TOC>6.16% usually have a low porosity probably due to compaction and/or different organic fractions. Residual bitumen (S1) is weakly and negatively correlated with Hg-porosity, due to residual bitumen filling in OM and mineral pores and reducing the total porosity. In addition, BET surface area decreases with increasing clay mineral content and Hg-porosity decreases with increasing quartz content, illustrating that clay mineral is unfavorable to the development of micropores and fine mesopores and high content of quartz may reduce macropore space. Finally, the shales of the Gufeng and Dalong Formations display a higher TOC content and a better physical property than the Longtan Formation shales and appear to be superior prospective shale gas exploration potential.

KW - pore characteristics

KW - N2GA

KW - MIP

KW - FE-SEM

KW - Permian shale

KW - southern Anhui province

U2 - 10.1016/j.jngse.2018.10.018

DO - 10.1016/j.jngse.2018.10.018

M3 - Article

VL - 60

SP - 228

EP - 245

JO - Journal of Natural Gas Science & Engineering

JF - Journal of Natural Gas Science & Engineering

SN - 1875-5100

ER -