Automatic detection of wakefulness and rest intervals in actigraphic signals: A data-driven approach

D. Martin-Martinez, Juan Pablo Casaseca, Jesus Maria Andres de Llano, J. R. Garmendia-Leiza, S. Alberola-Lopez, C. Alberola-Lopez

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Actigraphy is an useful tool for evaluating the activity pattern of a subject; activity registries are usually processed by first splitting the signal into its wakefulness and rest intervals and then analyzing each one in isolation. Consequently, a preprocessing stage for such a splitting is needed. Several methods have been reported to this end but they rely on parameters and thresholds which are manually set based on previous knowledge of the signals or learned from training. This compromises the general applicability of this methods. In this paper we propose a new method in which thresholds are automatically set based solely on the specific registry to be analyzed. The method consists of two stages: (1) estimation of an initial classification mask by means of the expectation maximization algorithm and (2) estimation of a final refined mask through an iterative method which re-estimates both the mask and the classifier parameters at each iteration step. Results on real data show that our methodology outperforms those so far proposed and can be more effectively used to obtain derived sleep quality parameters from actigraphy registries. (C) 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
Original languageEnglish
Pages (from-to)1585-1592
JournalMedical Engineering & Physics
Volume36
Issue number12
DOIs
Publication statusPublished - Dec 2014

Keywords

  • Actigraphy
  • Wakefulness/Rest detection
  • Probability density function
  • Expectation-maximization algorithm

Fingerprint

Dive into the research topics of 'Automatic detection of wakefulness and rest intervals in actigraphic signals: A data-driven approach'. Together they form a unique fingerprint.

Cite this