AI-driven 5G IoT e-nose for whiskey classification

Jaume Segura-Garcia, Rafael Fayos-Jordan, Mohammad Alselek, Sergi Maicas, Miguel Arevalillo-Herraez, Enrique A. Navarro-Camba, Jose M. Alcaraz-Calero*

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    5 Downloads (Pure)

    Abstract

    The main contribution is the design, implementation and validation of a complete AI-driven electronic nose architecture to perform the classification of whiskey and acetones. This classification is of paramount important in the distillery production line of whiskey in order to predict the quality of the final product. In this work, we investigate the application of an e-nose (based on arrays of single-walled carbon nanotubes) to the distinction of two different substances, such as whiskey and acetone (as a subproduct of the distillation process), and discrimination of three different types of the same substance, such as three types of whiskies. We investigated different strategies to classify the odor data and provided a suitable approach based on random forest with accuracy of 99% and with inference times under 1.8 seconds. In the case of clearly different substances, as subproducts of the whiskey distillation process, the procedure presented achieves a high accuracy in the classification process, with an accuracy around 96%.
    Original languageEnglish
    Pages (from-to)1-22
    Number of pages22
    JournalApplied Intelligence
    DOIs
    Publication statusAccepted/In press - 1 Mar 2025

    Keywords

    • 5G IoT
    • e-nose
    • PCA
    • ML
    • odor discrimination

    Fingerprint

    Dive into the research topics of 'AI-driven 5G IoT e-nose for whiskey classification'. Together they form a unique fingerprint.

    Cite this